skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strong Metric (Sub)regularity of Karush–Kuhn–Tucker Mappings for Piecewise Linear-Quadratic Convex-Composite Optimization and the Quadratic Convergence of Newton’s Method
This work concerns the local convergence theory of Newton and quasi-Newton methods for convex-composite optimization: where one minimizes an objective that can be written as the composition of a convex function with one that is continuiously differentiable. We focus on the case in which the convex function is a potentially infinite-valued piecewise linear-quadratic function. Such problems include nonlinear programming, mini-max optimization, and estimation of nonlinear dynamics with non-Gaussian noise as well as many modern approaches to large-scale data analysis and machine learning. Our approach embeds the optimality conditions for convex-composite optimization problems into a generalized equation. We establish conditions for strong metric subregularity and strong metric regularity of the corresponding set-valued mappings. This allows us to extend classical convergence of Newton and quasi-Newton methods to the broader class of nonfinite valued piecewise linear-quadratic convex-composite optimization problems. In particular, we establish local quadratic convergence of the Newton method under conditions that parallel those in nonlinear programming.  more » « less
Award ID(s):
1514559
PAR ID:
10187912
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
45
Issue:
3
ISSN:
0364-765X
Page Range / eLocation ID:
1164 to 1192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-theart sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models. 
    more » « less
  2. This paper introduces LSEMINK, an effective modified Newton–Krylov algorithm geared toward minimizing the log-sum-exp function for a linear model. Problems of this kind arise commonly, for example, in geometric programming and multinomial logistic regression. Although the log-sum-exp function is smooth and convex, standard line-search Newton-type methods can become inefficient because the quadratic approximation of the objective function can be unbounded from below. To circumvent this, LSEMINK modifies the Hessian by adding a shift in the row space of the linear model. We show that the shift renders the quadratic approximation to be bounded from below and that the overall scheme converges to a global minimizer under mild assumptions. Our convergence proof also shows that all iterates are in the row space of the linear model, which can be attractive when the model parameters do not have an intuitive meaning, as is common in machine learning. Since LSEMINK uses a Krylov subspace method to compute the search direction, it only requires matrix-vector products with the linear model, which is critical for large-scale problems. Our numerical experiments on image classification and geometric programming illustrate that LSEMINK considerably reduces the time-to-solution and increases the scalability compared to geometric programming and natural gradient descent approaches. It has significantly faster initial convergence than standard Newton–Krylov methods, which is particularly attractive in applications like machine learning. In addition, LSEMINK is more robust to ill-conditioning arising from the nonsmoothness of the problem. We share our MATLAB implementation at a GitHub repository (https://github.com/KelvinKan/LSEMINK). 
    more » « less
  3. Supervised operator learning centers on the use of training data, in the form of input-output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as apowerful tool to complement traditional scientific computing, which may often be framedin terms of operators mapping between spaces of functions. Building on the classical ran-dom features methodology for scalar regression, this paper introduces the function-valuedrandom features method. This leads to a supervised operator learning architecture thatis practical for nonlinear problems yet is structured enough to facilitate efficient trainingthrough the optimization of a convex, quadratic cost. Due to the quadratic structure, thetrained model is equipped with convergence guarantees and error and complexity bounds,properties that are not readily available for most other operator learning architectures. Atits core, the proposed approach builds a linear combination of random operators. Thisturns out to be a low-rank approximation of an operator-valued kernel ridge regression al-gorithm, and hence the method also has strong connections to Gaussian process regression.The paper designs function-valued random features that are tailored to the structure oftwo nonlinear operator learning benchmark problems arising from parametric partial differ-ential equations. Numerical results demonstrate the scalability, discretization invariance,and transferability of the function-valued random features method. 
    more » « less
  4. Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method. 
    more » « less
  5. Abstract This paper examines a number of extrapolation and acceleration methods and introduces a few modifications of the standard Shanks transformation that deal with general sequences. One of the goals of the paper is to lay out a general framework that encompasses most of the known acceleration strategies. The paper also considers the Anderson Acceleration (AA) method under a new light and exploits a connection with quasi-Newton methods in order to establish local linear convergence results of a stabilized version of the AA method. The methods are tested on a number of problems, including a few that arise from nonlinear partial differential equations. 
    more » « less