skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A conceptual framework for human–AI hybrid adaptivity in education
Educational AI (AIEd) systems are increasingly designed and evaluated with an awareness of the hybrid nature of adaptivity in real-world educational settings. In practice, beyond being a property of AIEd systems alone, adaptivity is often jointly enacted by AI systems and human facilitators (e.g., teachers or peers). Despite much recent research activity, theoretical and conceptual guidance for the design of such human–AI systems remains limited. In this paper we explore how adaptivity may be shared across AIEd systems and the various human stakeholders who work with them. Based on a comparison of prior frameworks, which tend to examine adaptivity in AIEd systems or human coaches separately, we first synthesize a set of dimensions general enough to capture human–AI hybrid adaptivity. Using these dimensions, we then present a conceptual framework to map distinct ways in which humans and AIEd systems can augment each other’s abilities. Through examples, we illustrate how this framework can be used to characterize prior work and envision new possibilities for human–AI hybrid approaches in education.  more » « less
Award ID(s):
1822861
PAR ID:
10189155
Author(s) / Creator(s):
Date Published:
Journal Name:
Artificial Intelligence in Education. AIED 2020
Volume:
2020
Page Range / eLocation ID:
240-254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K-12 teachers and students. Using human-centered design methods rarely employed in AIED research, this work builds on prior findings to contribute: (1) an analysis of teacher and student feedback on 24 design concepts for systems that integrate human and AI instruction; and (2) participatory speed dating (PSD): a new variant of the speed dating design method, involving iterative concept generation and evaluation with multiple stakeholders. Using PSD, we found that teachers desire greater real-time support from AI tutors in identifying when students need human help, in evaluating the impacts of their own help-giving, and in managing student motivation. Meanwhile, students desire better mechanisms to signal help-need during class without losing face to peers, to receive emotional support from human rather than AI tutors, and to have greater agency over how their personal analytics are used. This work provides tools and insights to guide the design of more effective human–AI partnerships for K-12 education. 
    more » « less
  2. Dynamically transitioning between individual and collaborative learning activities during a class session (i.e., in an un-planned way, as-the-need-arises) has advantages for students, but existing orchestration tools are not designed to support such transitions. This work reports findings from a technology probe study that explored alternative designs for classroom co-orchestration support for dynamically transitioning between individual and collaborative learning, focused on how control over the transitions should be divided or shared among teachers, students, and orchestration system. This study involved 1) a pilot in an authentic classroom scenario with AI support for individual and collaborative learning; and 2) design workshops and interviews with students and teachers. Findings from the study suggest the need for hybrid control between students, teachers, and AI systems over transitions as well as for adaptivity and/or adaptability for different classrooms, teachers, and students’ prior knowledge. This study is the first to explore human–AI control over dynamic transitions between individual and collaborative learning in actual classrooms. 
    more » « less
  3. Artificial intelligence (AI) and machine learning models are being increasingly deployed in real-world applications. In many of these applications, there is strong motivation to develop hybrid systems in which humans and AI algorithms can work together, leveraging their complementary strengths and weaknesses. We develop a Bayesian framework for combining the predictions and different types of confidence scores from humans and machines. The framework allows us to investigate the factors that influence complementarity, where a hybrid combination of human and machine predictions leads to better performance than combinations of human or machine predictions alone. We apply this framework to a large-scale dataset where humans and a variety of convolutional neural networks perform the same challenging image classification task. We show empirically and theoretically that complementarity can be achieved even if the human and machine classifiers perform at different accuracy levels as long as these accuracy differences fall within a bound determined by the latent correlation between human and machine classifier confidence scores. In addition, we demonstrate that hybrid human–machine performance can be improved by differentiating between the errors that humans and machine classifiers make across different class labels. Finally, our results show that eliciting and including human confidence ratings improve hybrid performance in the Bayesian combination model. Our approach is applicable to a wide variety of classification problems involving human and machine algorithms. 
    more » « less
  4. AbstractRecent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open‐ended environments. AI systems are known to underperform humans in (1) interpreting students' emotions in learning contexts, (2) grasping the nuances of social interactions and (3) understanding domain‐specific information that was not well‐represented in the training data. As such, combined human and AI (ie, hybrid) approaches are needed to overcome the current limitations of AI systems. In this paper, we take a first step towards investigating how a human‐AI collaboration between teachers and researchers using an AI‐generated multimodal timeline can guide and support teachers' feedback while addressing students' STEM+C difficulties as they work collaboratively to build computational models and solve problems. In doing so, we present a framework characterizing the human component of our human‐AI partnership as a collaboration between teachers and researchers. To evaluate our approach, we present our timeline to a high school teacher and discuss the key insights gleaned from our discussions. Our case study analysis reveals the effectiveness of an iterative approach to using human‐AI collaboration to address students' STEM+C challenges: the teacher can use the AI‐generated timeline to guide formative feedback for students, and the researchers can leverage the teacher's feedback to help improve the multimodal timeline. Additionally, we characterize our findings with respect to two events of interest to the teacher: (1) when the students cross adifficulty threshold,and (2) thepoint of intervention, that is, when the teacher (or system) should intervene to provide effective feedback. It is important to note that the teacher explained that there should be a lag between (1) and (2) to give students a chance to resolve their own difficulties. Typically, such a lag is not implemented in computer‐based learning environments that provide feedback. Practitioner notesWhat is already known about this topicCollaborative, open‐ended learning environments enhance students' STEM+C conceptual understanding and practice, but they introduce additional complexities when students learn concepts spanning multiple domains.Recent advances in generative AI and MMLA allow for integrating multiple datastreams to derive holistic views of students' states, which can support more informed feedback mechanisms to address students' difficulties in complex STEM+C environments.Hybrid human‐AI approaches can help address collaborating students' STEM+C difficulties by combining the domain knowledge, emotional intelligence and social awareness of human experts with the general knowledge and efficiency of AI.What this paper addsWe extend a previous human‐AI collaboration framework using a hybrid intelligence approach to characterize the human component of the partnership as a researcher‐teacher partnership and present our approach as a teacher‐researcher‐AI collaboration.We adapt an AI‐generated multimodal timeline to actualize our human‐AI collaboration by pairing the timeline with videos of students encountering difficulties, engaging in active discussions with a high school teacher while watching the videos to discern the timeline's utility in the classroom.From our discussions with the teacher, we define two types ofinflection pointsto address students' STEM+C difficulties—thedifficulty thresholdand theintervention point—and discuss how thefeedback latency intervalseparating them can inform educator interventions.We discuss two ways in which our teacher‐researcher‐AI collaboration can help teachers support students encountering STEM+C difficulties: (1) teachers using the multimodal timeline to guide feedback for students, and (2) researchers using teachers' input to iteratively refine the multimodal timeline.Implications for practice and/or policyOur case study suggests that timeline gaps (ie, disengaged behaviour identified by off‐screen students, pauses in discourse and lulls in environment actions) are particularly important for identifying inflection points and formulating formative feedback.Human‐AI collaboration exists on a dynamic spectrum and requires varying degrees of human control and AI automation depending on the context of the learning task and students' work in the environment.Our analysis of this human‐AI collaboration using a multimodal timeline can be extended in the future to support students and teachers in additional ways, for example, designing pedagogical agents that interact directly with students, developing intervention and reflection tools for teachers, helping teachers craft daily lesson plans and aiding teachers and administrators in designing curricula. 
    more » « less
  5. A goal of the AIED community is to create equitable systems; yet, we lack a cohesive viewpoint on how to do so. In the present work, we propose power as this organizing principle. We utilize the data feminism framework to showcase how we might balance power, focusing on learner engagement. We utilize multimodal data from ten middle school girls in a virtual computer science camp to discuss how the AIED community might create systems of equity that support all learners. 
    more » « less