skip to main content


Title: Code, Connect, Create: The 3C Professional Development Model to Support Computational Thinking Infusion
Despite the increasing attention to infusing CT into middle and high school content area classrooms, there is a lack of information about the most effective practices and models to support teachers in their efforts to integrate disciplinary content and CT principles. To address this need, this paper proposes the Code, Connect and Create (3C) professional development (PD) model, which was designed to support middle and high school content area teachers in infusing computational thinking into their classrooms. To evaluate the model, we analyzed quantitative and qualitative data collected from Infusing Computing PD workshops designed for in-service science, math, English language arts, and social studies teachers located in two Southeastern states. Drawing on findings from our analysis of teacher-created learning segments, surveys, and interviews, we argue that the 3C professional development model supported shifts in teacher understandings of the role of computational thinking in content area classrooms, as well as their self-efficacy and beliefs regarding CT integration into disciplinary content. We conclude by offering implications for the use of this model to increase teacher and student access to computational thinking practices in middle and high school classrooms.  more » « less
Award ID(s):
1742332
NSF-PAR ID:
10189510
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
SIGCSE '20: Proceedings of the 51st ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
971 to 977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  2. This article describes the Infusing Computing project, a 4-year study designed to support middle and high school teachers in infusing computational thinking (CT) into their disciplinary teaching. Due to the COVID-19 pandemic, weeklong workshops held in summer 2020 were shifted to a virtual format and utilized emerging technology tools, synchronous and asynchronous sessions, explicit collaborative scaffolds, networking, and digital badging. Specifically, this study examined the experiences of English language arts (ELA) teachers (14 middle school, 13 high school) who participated in the virtual Infusing Computing workshops. Findings demonstrated that ELA teachers were able to leverage learning successfully from virtual PD to infuse CT into existing curricula, although teachers differed in the ways that they appropriated and adapted pedagogical tools for CT infusion. 
    more » « less
  3. As the importance to integrate engineering into K12 curricula grows so does the need to develop teachers’ engineering teaching capabilities and knowledge. One method that has been used to aid this development is engineering professional development programs. This evaluation paper presents the successes and challenges of an engineering professional development program for teachers focused around the use of engineering problem-framing design activities in high school science classrooms. These activities were designed to incorporate the cross-cutting ideas published in the Next Generation Science Standards (NGSS) and draw on best practices for instructional design of problem-framing activities from research on design and model-eliciting activities (MEAs). The professional development (PD) was designed to include the following researched-based effective PD key elements: (1) is content focused, (2) incorporates active learning, (3) supports collaboration, (4) uses models of effective practice, (5) provides coaching and expert support, (6) offers feedback and reflection, and (7) is of sustained duration. The engineering PD, including in-classroom deployment of activities and data collection, was designed as an iterative process to be conducted over a three-year period. This will allow for improvement and refinement of our approach. The first iteration, reported in this paper, consisted of seven high school science teachers who have agreed to participate in the PD, implement the problem-framing activities, and collect student data over a period of one year. The PD itself consisted of the teachers comparing science and engineering, participating in problem-framing training and activities, and developing a design challenge scenario for their own courses. The participating teachers completed a survey at the end of the PD that will be used to inform enhancement of the PD and our efforts to recruit additional participants in the following year. The qualitative survey consisted of open-ended questions asking for the most valuable takeaways from the PD, their reasoning for joining the PD, reasons they would or would not recommend the PD, and, in their opinion, what would inspire their colleagues to attend the PD. The responses to the survey along with observations from the team presenting the PD were analyzed to identify lessons learned and future steps for the following iteration of the PD. From the data, three themes emerged: Development of PD, Teacher Motivation, and Teacher Experience. 
    more » « less
  4. We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units. 
    more » « less
  5. null (Ed.)
    Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation. 
    more » « less