We demonstrate a laser tunable in intensity with gigahertz tuning speed based on a III/V reflective semiconductor optical amplifier (RSOA) coupled to a silicon photonic chip. The silicon chip contains a Bragg-based Fabry–Perot resonator to form a passive bandpass filter within its stopband to enable single-mode operation of the laser. We observe a side mode suppression ratio of 43 dB, linewidth of 790 kHz, and an optical output power of 1.65 mW around 1530 nm. We also investigate using a micro-ball lens as an alternative coupling method between the RSOA and the silicon chip.
more »
« less
Real-time dynamic wavelength tuning and intensity modulation of metal-clad nanolasers
To realize ubiquitously used photonic integrated circuits, on-chip nanoscale sources are essential components. Subwavelength nanolasers, especially those based on a metal-clad design, already possess many desirable attributes for an on-chip source such as low thresholds, room-temperature operation and ultra-small footprints accompanied by electromagnetic isolation at pitch sizes down to ∼50 nm. Another valuable characteristic for a source would be control over its emission wavelength and intensity in real-time. Most efforts on tuning/modulation thus far report static changes based on irreversible techniques not suited for high-speed operation. In this study, we demonstratein-situdynamical tuning of the emission wavelength of a metallo-dielectric nanolaser at room temperature by applying an external DC electric field. Using an AC electric field, we show that it is also possible to modulate the output intensity of the nanolaser at high speeds. The nanolaser’s emission wavelength in the telecom band can be altered by as much as 8.35 nm with a tuning sensitivity of ∼1.01 nm/V. Additionally, the output intensity can be attenuated by up to 89%, a contrast sufficient for digital data communication purposes. Finally, we achieve an intensity modulation speed up to 400 MHz, limited only by the photodetector bandwidth used in this study, which underlines the capability of high-speed operation via this method. This is the first demonstration of a telecom band nanolaser source with dynamic spectral tuning and intensity modulation based on an external E-field to the best of our knowledge.
more »
« less
- PAR ID:
- 10189691
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 19
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 27346
- Size(s):
- Article No. 27346
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optically pumped lasing from highly Zn-doped GaAs nanowires lying on an Au film substrate and from Au-coated nanowires has been demonstrated up to room temperature. The conically shaped GaAs nanowires were first coated with a 5 nm thick Al 2 O 3 shell to suppress atmospheric oxidation and band-bending effects. Doping with a high Zn concentration increases both the radiative efficiency and the material gain and leads to lasing up to room temperature. A detailed analysis of the observed lasing behavior, using finite-difference time domain simulations, reveals that the lasing occurs from low loss hybrid modes with predominately photonic character combined with electric field enhancement effects. Achieving low loss lasing from NWs on an Au film and from Au coated nanowires opens new prospects for on-chip integration of nanolasers with new functionalities including electro-optical modulation, conductive shielding, and polarization control.more » « less
-
Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect density as determined by low-temperature time-resolved PL measurements. Additionally, the NW-PC structures enable the positioning of erbium (Er 3+ ) ions with an accuracy of 10 nm, an improvement on the current state-of-the-art ion implantation processes, and allow strong coupling of Er 3+ ions in NW-PC. The NW-PC structure is pivotal in engineering the Er 3+ -induced 1540-nm emission, which is the telecommunication wavelength used in optical fibers. An approximately 60-fold increase in the room-temperature Er 3+ PL emission is observed in NW-PC compared to its thin-film analog in the linear pumping regime. Furthermore, 22 times increase in the Er 3+ PL intensity per number of exited Er ions in NW-PC was observed at saturation while using 20 times lower pumping power. The NW-PC structures demonstrate broadband and efficient excitation characteristics for Er 3+ , with an absorption cross-section (~2 × 10 −18 cm 2 ) two-order larger than typical benchmark values for direct absorption in rare-earth-doped quantum materials. Experimental and simulation results show that the Er 3+ PL is photostable at high pumping power and polarized in NW-PC and is modulated with NW-PC lattice periodicity. The observed characteristics from these technologically friendly nanophotonic structures provide a promising route to the development of scalable nanophotonics and formation of single-photon emitters in the telecom optical wavelength band.more » « less
-
null (Ed.)Abstract We report the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the ultraviolet wavelength range. During epitaxial growth of the AlInN layer, an AlInN shell is spontaneously formed, resulting in reduced nonradiative recombination on the nanowire surface. The AlInN nanowires exhibit a high internal quantum efficiency of ~52% at room temperature for emission at 295 nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth conditions. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded, which is ~4 times stronger than the transverse electric (TE) polarized light at 295 nm. This study provides an alternative approach for the fabrication of new types of high-performance ultraviolet light emitters.more » « less
-
Optical isolators, reliably integrated on-chip, are crucial components for a wide range of optical systems and applications. We introduce a new class of wideband nonmagnetic and linear optical isolators based on nonlinear frequency conversion and spectral filtering among the pump, signal, and idler wavelengths. The scheme is experimentally demonstrated using difference-frequency generation in periodically poled thin-film lithium niobate integrated devices and short- and long-pass optical filters. We demonstrate a wide bandwidth of more than 150 nm, limited only by the measurement setup, and an optical isolation ratio of up to 18 dB for the involved idler and signal waves. The difference of transmittance at the signal wavelength between forward and backward propagation is 40 dB. We also discuss pathways for substantial isolation improvement using appropriate anti-reflection coatings. The integrable isolator, operating in the telecommunication band, is characterized by a perfectly linear output versus input power dependence and can be incorporated into high-speed telecom and datacom systems as well as a variety of other applications.more » « less
An official website of the United States government
