skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Distributional Framework for Data Valuation, ICML
Shapley value is a classic notion from game theory, historically used to quantify the contributions of individuals within groups, and more recently applied to assign values to data points when training machine learning models. Despite its foundational role, a key limitation of the data Shapley framework is that it only provides valuations for points within a fixed data set. It does not account for statistical aspects of the data and does not give a way to reason about points outside the data set. To address these limitations, we propose a novel framework -- distributional Shapley -- where the value of a point is defined in the context of an underlying data distribution. We prove that distributional Shapley has several desirable statistical properties; for example, the values are stable under perturbations to the data points themselves and to the underlying data distribution. We leverage these properties to develop a new algorithm for estimating values from data, which comes with formal guarantees and runs two orders of magnitude faster than state-of-the-art algorithms for computing the (non-distributional) data Shapley values. We apply distributional Shapley to diverse data sets and demonstrate its utility in a data market setting.  more » « less
Award ID(s):
1908774
PAR ID:
10190147
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x1,...,xn. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluated based on its "worst-case, expected error" where the expectation is with respect to the distribution P from which the sample A and target sets B are drawn, and the worst-case is with respect to the data values x1,...,xn. Within this framework, we give an efficient algorithm for estimating the target mean that returns a weighted combination of the sample values–-where the weights are functions of the distribution P and the sample and target sets A, B--and show that the worst-case expected error achieved by this algorithm is at most a multiplicative pi/2 factor worse than the optimal of such algorithms. The algorithm and proof leverage a surprising connection to the Grothendieck problem. We also extend these results to the linear regression setting where each datapoint is not a scalar but a labeled vector (xi,yi). This framework, which makes no distributional assumptions on the data values but rather relies on knowledge of the data collection process via the distribution P, is a significant departure from the typical statistical estimation framework and introduces a uniform analysis for the many natural settings where membership in a sample may be correlated with data values, such as when individuals are recruited into a sample through their social networks as in "snowball/chain" sampling or when samples have chronological structure as in "selective prediction". 
    more » « less
  2. Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts. 
    more » « less
  3. Geospatio-temporal data are pervasive across numerous application domains.These rich datasets can be harnessed to predict extreme events such as disease outbreaks, flooding, crime spikes, etc.However, since the extreme events are rare, predicting them is a hard problem. Statistical methods based on extreme value theory provide a systematic way for modeling the distribution of extreme values. In particular, the generalized Pareto distribution (GPD) is useful for modeling the distribution of excess values above a certain threshold. However, applying such methods to large-scale geospatio-temporal data is a challenge due to the difficulty in capturing the complex spatial relationships between extreme events at multiple locations. This paper presents a deep learning framework for long-term prediction of the distribution of extreme values at different locations. We highlight its computational challenges and present a novel framework that combines convolutional neural networks with deep set and GPD. We demonstrate the effectiveness of our approach on a real-world dataset for modeling extreme climate events. 
    more » « less
  4. The complex nature of artificial neural networks raises concerns on their reliability, trustworthiness, and fairness in real-world scenarios. The Shapley value---a solution concept from game theory---is one of the most popular explanation methods for machine learning models. More traditionally, from a statistical perspective, feature importance is defined in terms of conditional independence. So far, these two approaches to interpretability and feature importance have been considered separate and distinct. In this work, we show that Shapley-based explanation methods and conditional independence testing are closely related. We introduce the \textbf{SHAP}ley E\textbf{X}planation \textbf{R}andomization \textbf{T}est (SHAP-XRT), a testing procedure inspired by the Conditional Randomization Test (CRT) for a specific notion of local (i.e., on a sample) conditional independence. With it, we prove that for binary classification problems, the marginal contributions in the Shapley value provide lower and upper bounds to the expected p-values of their respective tests. Furthermore, we show that the Shapley value itself provides an upper bound to the expected p-value of a global (i.e., overall) null hypothesis. As a result, we further our understanding of Shapley-based explanation methods from a novel perspective and characterize the conditions under which one can make statistically valid claims about feature importance via the Shapley value. 
    more » « less
  5. The increasing demand for data-driven machine learning (ML) models has led to the emergence of model markets, where a broker collects personal data from data owners to produce high-usability ML models. To incentivize data owners to share their data, the broker needs to price data appropriately while protecting their privacy. For equitable data valuation , which is crucial in data pricing, Shapley value has become the most prevalent technique because it satisfies all four desirable properties in fairness: balance, symmetry, zero element, and additivity. For the right to be forgotten , which is stipulated by many data privacy protection laws to allow data owners to unlearn their data from trained models, the sharded structure in ML model training has become a de facto standard to reduce the cost of future unlearning by avoiding retraining the entire model from scratch. In this paper, we explore how the sharded structure for the right to be forgotten affects Shapley value for equitable data valuation in model markets. To adapt Shapley value for the sharded structure, we propose S-Shapley value, a sharded structure-based Shapley value, which satisfies four desirable properties for data valuation. Since we prove that computing S-Shapley value is #P-complete, two sampling-based methods are developed to approximate S-Shapley value. Furthermore, to efficiently update valuation results after data owners unlearn their data, we present two delta-based algorithms that estimate the change of data value instead of the data value itself. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms. 
    more » « less