Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess higher-order network geometry changes in the network to determine flood impacts. The findings show network-wide persistent increased travel times could last for weeks after the flood water has receded, even after modest flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic network. The results also show that distant trips would experience a greater percentage increase in travel time. Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time and traffic network geometry.
more »
« less
Tradeoffs between safety and time: A routing view
This article proposes a data-driven combination of travel times, distance, and collision counts in urban mobility datasets, with the goal of quantifying how intertwined traffic accidents are in the road network of a city. We devise a bi-attribute routing problem to capture the tradeoff between travel time and accidents. We apply this to a dataset from New York City. By visualizing the results of this computation in a normalized way, we provide a comparative tool for studies of urban traffic.
more »
« less
- Award ID(s):
- 1727785
- NSF-PAR ID:
- 10190356
- Date Published:
- Journal Name:
- Transportation research Part C Emerging technologies
- Volume:
- 108
- ISSN:
- 1879-2359
- Page Range / eLocation ID:
- 357-377
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations.more » « less
-
Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone.more » « less
-
Big cities are well-known for their traffic congestion and high density of vehicles such as cars, buses, trucks, and even a swarm of motorbikes that overwhelm city streets. Large-scale development projects have exacerbated urban conditions, making traffic congestion more severe. In this paper, we proposed a data-driven city traffic planning simulator. In particular, we make use of the city camera system for traffic analysis. It seeks to recognize the traffic vehicles and traffic flows, with reduced intervention from monitoring staff. Then, we develop a city traffic planning simulator upon the analyzed traffic data. The simulator is used to support metropolitan transportation planning. Our experimental findings address traffic planning challenges and the innovative technical solutions needed to solve them in big cities.more » « less
-
Urban anomalies have a large impact on passengers' travel behavior and city infrastructures, which can cause uncertainty on travel time estimation. Understanding the impact of urban anomalies on travel time is of great value for various applications such as urban planning, human mobility studies and navigation systems. Most existing studies on travel time have been focused on the total riding time between two locations on an individual transportation modality. However, passengers often take different modes of transportation, e.g., taxis, subways, buses or private vehicles, and a significant portion of the travel time is spent in the uncertain waiting. In this paper, we study the fine-grained travel time patterns in multiple transportation systems under the impact of urban anomalies. Specifically, (i) we investigate implicit components, including waiting and riding time, in multiple transportation systems; (ii) we measure the impact of real-world anomalies on travel time components; (iii) we design a learning-based model for travel time component prediction with anomalies. Different from existing studies, we implement and evaluate our measurement framework on multiple data sources including four city-scale transportation systems, which are (i) a 14-thousand taxicab network, (ii) a 13-thousand bus network, (iii) a 10-thousand private vehicle network, and (iv) an automatic fare collection system for a public transit network (i.e., subway and bus) with 5 million smart cards.more » « less