skip to main content


Title: Nonlinear mode coupling in a MEMS resonator
A single micro-electromechanical (MEMS) resonator can be shown to exhibit behaviors unexpected in a simple resonant structure. For small driving forces, the resonator displays typical simple harmonic oscillator re- sponse. As the driving force is increased, the resonator shows the slightly more complex, but well understood, Duffing response. Rather unexpected response behavior can appear when the resonator frequency is detuned by nonlinear- ity to where two oscillatory modes of the resonator begin to interact through nonlinear coupling due to an internal resonance. The paper focuses on how the resonator response changes as the internal resonance is approached in the operating parameter space and how that behavior is conveniently represented in a bifurcation diagram. This behavior is accurately captured by a generic mathematical model. We describe an analysis of the model which shows how this coupled response varies with the system and drive parameters, especially focusing on the nonlinear coupling strength between the two modes.  more » « less
Award ID(s):
1662619
NSF-PAR ID:
10192162
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of SPIE
Volume:
Proc. SPIE 11324
Page Range / eLocation ID:
1132414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we demonstrate bursting behavior in a nonlinear microelectromechanical (MEMS) resonator that creates a frequency comb in the corresponding spectral response. The bursting behavior occurs for a single driving tone applied to the resonator. The bursting behavior arises from the non-linear analog of “level anti-crossing” in a 1:3 internal resonance that can efficiently transfer energy between two modes of a resonator at low excitation amplitudes. The internal resonance creates a region in parameter space where stable oscillations do not exist, resulting in a forbidden zone of operation. 
    more » « less
  2. null (Ed.)
    Abstract Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade. Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a clamped–clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems. 
    more » « less
  3. Abstract In this work we demonstrate how one can improve the angular rate sensitivity of ring/disk resonating gyroscopes by tailoring their nonlinear behavior by systematic shaping of the gyroscope body and electrodes, and by the tuning of bias voltages on segmented electrodes. Of specific interest are the drive and sense mode Duffing nonlinearities, which limit their dynamic ranges, and the intermodal dispersive coupling between these modes that provides parametric amplification of the sense mode output signal. These two effects have the same physical origins and are in competition in terms of system performance, which naturally calls for optimization considerations. The present analysis is based on a systematic modeling of the nonlinear response of these devices by which we explore ways in which one can optimize the angular rate sensitivity by manipulating the mechanical and electrostatic contributions to the nonlinearities. In particular, non-uniform modifications of the gyroscope body thickness are employed to affect the mechanical contributions to these parameters, while the electrostatic components are manipulated via shaping of the resonator-electrode gap and by applying non-uniform bias voltages among segmented electrodes around the gyroscope body. These models predict that such relatively simple alterations can achieve improvements in gain by about an order of magnitude when compared to devices with uniform layouts. 
    more » « less
  4. In this article we propose a theoretical investigation of the nonlinear dynamical response of a class of planar resonators dubbed the V-Shaped resonator. The resonators are intended for energy harvesting purpose and are designed to exhibit two-to-one internal resonance. In particular, we navigate the design space for the generalized V-shaped resonator to investigate the influence of shape parameters on the performance of the Vibration Energy Harvester. Notably, we introduce two metrics that help elucidating the role of the shape parameter in dictating the behavior of the system in terms of peak voltage and operational bandwidth width. For simplicity, we consider that the system is subjected to harmonic excitations near its primary resonances. 
    more » « less
  5. We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a “basic” configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a “generalized” configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal (across the free spectral range (FSR)) modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

     
    more » « less