- Award ID(s):
- 1719851
- NSF-PAR ID:
- 10192180
- Date Published:
- Journal Name:
- European Journal of Applied Mathematics
- ISSN:
- 0956-7925
- Page Range / eLocation ID:
- 1 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Densely packed metasurfaces composed of cylindrical silicon nano-resonators were found to demonstrate the phenomenon of electromagnetically induced transparency at electric dipolar resonances. It was shown that this phenomenon is not related to overlapping of dipolar resonances or to the Kerker’s effects. The observed transparency appeared to be related to interference between waves scattered by nano-resonators and by additional scattering centers including the electric branch of lattice resonances. Coupled resonance fields were also found to contribute to observed phenomena.more » « less
-
Mann, Sander ; Vellucci, Stefano (Ed.)Exceptional points of degeneracy (EPD) can enhance the sensitivity of circuits by orders of magnitude. We show various configurations of coupled LC resonators via a gyrator that support EPDs of second and third-order. Each resonator includes a capacitor and inductor with a positive or negative value, and the corresponding EPD frequency could be real or imaginary. When a perturbation occurs in the second-order EPD gyrator-based circuit, we show that there are two real-valued frequencies shifted from the EPD one, following a square root law. This is contrary to what happens in a Parity-Time (PT) symmetric circuits where the two perturbed resonances are complex valued. We show how to get a stable EPD by coupling two unstable resonators, how to get an unstable EPD with an imaginary frequency, and how to get an EPD with a real frequency using an asymmetric gyrator. The relevant Puiseux fractional power series expansion shows the EPD occurrence and the circuit's sensitivity to perturbations. Our findings pave the way for new types of high-sensitive devices that can be used to sense physical, chemical, or biological changes.more » « less
-
The resonant profile of the rate coefficient for three-body recombination into a shallow dimer is investigated for mass-imbalanced systems. In the low-energy limit, three atoms collide with zero-range interactions, in a regime where the scattering lengths of the heavy–heavy and the heavy–light subsystems are positive and negative, respectively. For this physical system, the adiabatic hyperspherical representation is combined with a fully semi-classical method and we show that the shallow dimer recombination spectra display an asymmetric lineshape that originates from the coexistence of Efimov resonances with Stückelberg interference minima. These asymmetric lineshapes are quantified utilizing the Fano profile formula. In particular, a closed-form expression is derived that describes the width of the corresponding Efimov resonances and the Fano lineshape asymmetry parameter q. The profile of Efimov resonances exhibits a q-reversal effect as the inter- and intra-species scattering lengths vary. In the case of a diverging asymmetry parameter, i.e., |q|→∞, we show that the Efimov resonances possess zero width and are fully decoupled from the three-body and atom–dimer continua, and the corresponding Efimov metastable states behave as bound levels.more » « less
-
We show that topology optimization (TO) of metallic resonators can lead to ∼102 × improvement in surface-enhanced Raman scattering (SERS) efficiency compared to traditional resonant structures such as bowtie antennas. TO inverse design leads to surprising structures very different from conventional designs, which simultaneously optimize focusing of the incident wave and emission from the Raman dipole. We consider isolated metallic particles as well as more complicated configurations such as periodic surfaces or resonators coupled to dielectric waveguides, and the benefits of TO are even greater in the latter case. Our results are motivated by recent rigorous upper bounds to Raman scattering enhancement, and shed light on the extent to which these bounds are achievable.
-
We present an analytical model describing the transition to a strong coupling regime for an ensemble of emitters resonantly coupled to a localized surface plasmon in a metal–dielectric structure. The response of a hybrid system to an external field is determined by two distinct mechanisms involving collective states of emitters interacting with the plasmon mode. The first mechanism is the near-field coupling between the bright collective state and the plasmon mode, which underpins the energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra in the weak coupling regime and to emergence of polaritonic bands as the system transitions to the strong coupling regime. The second mechanism is the Fano interference between the plasmon dipole moment and the plasmon-induced dipole moment of the bright collective state as the hybrid system interacts with the radiation field. The latter mechanism is greatly facilitated by plasmon-induced coherence in a system with the characteristic size below the diffraction limit as the individual emitters comprising the collective state are driven by the same alternating plasmon near field and, therefore, all oscillate in phase. This cooperative effect leads to scaling of the Fano asymmetry parameter and of the Fano function amplitude with the ensemble size, and therefore, it strongly affects the shape of scattering spectra for large ensembles. Specifically, with increasing emitter numbers, the Fano interference leads to a spectral weight shift toward the lower energy polaritonic band.