skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D printable adhesive elastomers with dynamic covalent bond rearrangement
Soft 3D-printable adhesive elastomers with self-healing capabilities were formulated. These materials were 3D printed into complex structures and used to modify soft robots for shape-selective lifting.  more » « less
Award ID(s):
1749730
PAR ID:
10544474
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
26
ISSN:
1744-683X
Page Range / eLocation ID:
4964 to 4971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light processing (DLP)-based 3D printer for characterization. The 3D printable resin consists of monomer, crosslinker, conductive nano-filler, and a photo-initiator. The characterization was performed in two tracks. First, the effect of two different crosslinkers was investigated with different compositions and second, the effect of concentration of conductive nano-fillers was explored. Crosslinkers were chosen by referring to previous studies, and carbon nanotubes (CNTs) were utilized as conductive nano-fillers. The samples were 3D printed and characterized using an electromechanical test setup. To demonstrate utility for 3D printed soft robotics, a capacitance-based joystick sensor composed of both conductive and non-conductive resins was 3D printed. 
    more » « less
  2. You can print anything... or can you? 3D printing is an exciting new technology that promises to very quickly create anything people can design. Scientists who want to make soft robots, like Baymax from Big Hero 6TM, are excited about 3D printers. Our team uses 3D printing to make molds to produce soft robots. Molding is like using a muffin tin to make cupcakes. But can you make anything with 3D printing or are there times when 3D-printed molds do not work? Just like a cupcake liner, 3D-printed molds leave ridges, like a Ruffles potato chip, in soft robots. These ridges are a weak point where cracks can form, causing the robot to pop like a balloon. To prevent this, we sometimes need to make our robots using very smooth molds made from metal. This article talks about when and how 3D printing is useful in making soft robots. 
    more » « less
  3. Abstract Often, fluidic soft robots are driven by large pneumatic or low-bandwidth hydraulic systems which struggle to meet performance objectives. This research presents the design of two morphologies of compact, positive displacement hydraulic pumps designed to act as power supplies for fluidic soft robots. These hydraulic pumps were designed to leverage additive manufacturing technology, creating cost-effective, yet volumetrically powerful units. The operational bandwidth of these pumps (> 10Hz) was substantially higher than the natural frequency of most elastomer-based soft robots (1–5Hz), allowing high control authority. These designs allow for highly scalable pumps, with performance documented in the paper. Due to the 3D printed nature of the pump components, manufacture cost is greatly reduced when compared to machined components. Each was tested driving various soft robotic actuators, demonstrating high-bandwidth, yet precise operation. With their minimal size, these pumps are candidates for un-tethered mobile soft robots, and their low weight and low noise allows them to be carried on the body for robotic actuators used in mobility rehabilitation. 
    more » « less
  4. Abstract Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on‐demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser‐induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human–soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human–soft actuators interaction, including elastic metamaterials with human gesture‐controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on‐demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects. 
    more » « less
  5. Abstract BackgroundGiven the need for descriptive and increasingly mechanistic morphological analyses, contrast‐enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro‐level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA‐enhanced microCT. ResultsOur protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution. ConclusionThese protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position. 
    more » « less