skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can We Improve Information Freshness with Predictions in Mobile Crowd-Learning?
The rapid growth of mobile devices has spurred the development of crowd-learning applications, which rely on users to collect, report and share real-time information. A critical factor of crowd-learning is information freshness, which can be measured by a metric called age-of-information (AoI). Moreover, recent advances in machine learning and abundance of historical data have enabled crowd-learning service providers to make precise predictions on user arrivals, data trends and other predictable information. These developments lead to a fundamental question: Can we improve information freshness with predictions in mobile crowd-learning? In this paper, we show that the answer is affirmative. Specifically, motivated by the age-optimal Round-Robin policy, we propose the so-called “periodic equal spreading” (PES) policy. Under the PES policy, we first reveal a counter-intuitive insight that the frequency of prediction should not be too often in terms of AoI improvement. Further, we analyze the AoI performances of the proposed PES policy and derive upper bounds for the average age under i.i.d. and Markovian arrivals, respectively. In order to evaluate the AoI performance gain of the PES policy, we also derive two closed form expressions for the average age under uncontrolled i.i.d. and Markovian arrivals, which could be of independent interest. Our results in this paper serve as a first building block towards understanding the role of predictions in mobile crowd-learning.  more » « less
Award ID(s):
1717108 1815563
PAR ID:
10192356
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
Page Range / eLocation ID:
702 to 709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The proliferation of smart mobile devices has spurred an explosive growth of mobile crowd-learning services, where service providers rely on the user community to voluntarily collect, report, and share real-time information for a collection of scattered points of interest (PoI). A critical factor affecting the future large-scale adoption of such mobile crowd-learning applications is the freshness of the crowd-learned information, which can be measured by a metric termed “age-of-information” (AoI). However, we show that the AoI of mobile crowd-learning could be arbitrarily bad under selfish users’ behaviors if the system is poorly designed. This motivates us to design efficient reward mechanisms to incentivize mobile users to report information in time, with the goal of keeping the AoI and congestion level of each PoI low. Toward this end, we consider a simple linear AoI-based reward mechanism and analyze its AoI and congestion performances in terms of price of anarchy (PoA), which characterizes the degradation of the system efficiency due to selfish behavior of users. Remarkably, we show that the proposed mechanism achieves the optimal AoI performance asymptotically in a deterministic scenario. Further, we prove that the proposed mechanism achieves a bounded PoA in general stochastic cases, and the bound only depends on system parameters. Particularly, when the service rates of PoIs are symmetric in stochastic cases, the achieved PoA is upperbounded by 1/2 asymptotically. Collectively, this work advances our understanding of information freshness in mobile crowd-learning systems. 
    more » « less
  2. Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest. 
    more » « less
  3. measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest. 
    more » « less
  4. We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound. 
    more » « less
  5. We consider the problem of scheduling real-time traffic with hard deadlines in a wireless ad hoc network. In contrast to existing real-time scheduling policies that merely ensure a minimal timely throughput, our design goal is to provide guarantees on both the timely throughput and data freshness in terms of age-of-information (AoI), which is a newly proposed metric that captures the "age" of the most recently received information at the destination of a link. The main idea is to introduce the AoI as one of the driving factors in making scheduling decisions. We first prove that the proposed scheduling policy is feasibility-optimal, i.e., satisfying the per-traffic timely throughput requirement. Then, we derive an upper bound on a considered data freshness metric in terms of AoI, demonstrating that the network-wide data freshness is guaranteed and can be tuned under the proposed scheduling policy. Interestingly, we reveal that the improvement of network data freshness is at the cost of slowing down the convergence of the timely throughput. Extensive simulations are performed to validate our analytical results. Both analytical and simulation results confirm the capability of the proposed scheduling policy to improve the data freshness without sacrificing the feasibility optimality. 
    more » « less