- Award ID(s):
- 1923789
- PAR ID:
- 10193343
- Date Published:
- Journal Name:
- IEEE Global Communications Conference
- ISSN:
- 2576-6813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
End-to-End O-RAN Security Architecture, Threat Surface, Coverage, and the Case of the Open FronthaulO-RAN establishes an advanced radio access network (RAN) architecture that supports inter-operable, multi-vendor, and artificial intelligence (AI) controlled wireless access networks. The unique components, interfaces, and technologies of O-RAN differentiate it from the 3GPP RAN. Because O-RAN supports 3GPP protocols, currently 4G and 5G, while offering additional network interfaces and controllers, it has a larger attack surface. The O-RAN security requirements, vulnerabilities, threats, and countermeasures must be carefully assessed for it to become a platform for 5G Advanced and future 6G wireless. This article presents the ongoing standardization activities of the O-RAN Alliance for modeling the potential threats to the network and to the open fronthaul interface, in particular. We identify end-to-end security threats and discuss those on the open fronthaul in more detail. We then provide recommendations for countermeasures to tackle the identified security risks and encourage industry to establish standards and best practices for safe and secure implementations of the open fronthaul interface.more » « less
-
The main resource for providing wireless services is radio frequency (RF) spectrum. In order to explore new uses of spectrum shared among radio systems and services, field data needs to be collected. In this paper we design a testbed that can generate different 5G New Radio (NR) downlink transmission frames using the MATLAB 5G Toolbox, software-defined radio (SDR) hardware and GNU Radio Companion. This system will be used as a part of a testbed to study the RF interference caused by 5G transmissions to remote sensing receivers and evaluate different mechanisms for co-channel coexistence.more » « less
-
As 5G networks are gradually rolled out worldwide, it is important to ensure that their network infrastructures are resilient against malicious attacks. This work presents VET5G, a new virtual end-to-end testbed for 5G network security research experiments or training activities such as Capture-The-Flag competitions. The distinguishing features of VET5G include a home-grown 5G core network emulator written in Rust to ensure memory and thread safety, integration of OpenAirInterface’s Radio Access Network emulator and the official Android emulator to achieve full end-to-end 5G network emulation, inclusion of a reference P4 software switch to assist with prototyping of defense mechanisms for 5G data planes, implementation of Python APIs for easy 5G network experimentation, and adoption of JupyterHub to support multi-user experimentation. In our experiments we demonstrate how to use VET5G for two attack scenarios in 5G networks as well as its performance when it is used in a 5G hacking project for a Mobile Systems Security course.more » « less
-
Radio Frequency (RF) device fingerprinting has been recognized as a potential technology for enabling automated wireless device identification and classification. However, it faces a key challenge due to the domain shift that could arise from variations in the channel conditions and environmental settings, potentially degrading the accuracy of RF-based device classification when testing and training data is collected in different domains. This paper introduces a novel solution that leverages contrastive learning to mitigate this domain shift problem. Contrastive learning, a state-of-the-art self-supervised learning approach from deep learning, learns a distance metric such that positive pairs are closer (i.e. more similar) in the learned metric space than negative pairs. When applied to RF fingerprinting, our model treats RF signals from the same transmission as positive pairs and those from different transmissions as negative pairs. Through experiments on wireless and wired RF datasets collected over several days, we demonstrate that our contrastive learning approach captures domain-invariant features, diminishing the effects of domain-specific variations. Our results show large and consistent improvements in accuracy (10.8% to 27.8%) over baseline models, thus underscoring the effectiveness of contrastive learning in improving device classification under domain shift.more » « less
-
New capabilities in wireless network security have been enabled by deep learning that leverages and exploits signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and authenticate radio transmitters. Open-set detection is an area of deep learning that aims to identify RF data samples captured from new devices during deployment (aka inference) that were not part of the training set; i.e. devices that were unseen during training. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. In this paper, we introduce a novel open-set detection approach for RF data-driven device identification that extracts its neural network features from patterns of the hidden state values within a Convolutional Neural Network Long Short-Term Memory (CNN+LSTM) model. Experimental results obtained using real datasets collected from 15 IoT devices, each enabled with LoRa, wireless-Wi-Fi, and wired-Wi-Fi communication protocols, show that our new approach greatly improves the area under the precision-recall curve, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.