skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indian Ocean warming as a driver of the North Atlantic warming hole
Abstract Over the past century, the subpolar North Atlantic experienced slight cooling or suppressed warming, relative to the background positive temperature trends, often dubbed the North Atlantic warming hole (NAWH). The causes of the NAWH remain under debate. Here we conduct coupled ocean-atmosphere simulations to demonstrate that enhanced Indian Ocean warming, another salient feature of global warming, could increase local rainfall and through teleconnections strengthen surface westerly winds south of Greenland, cooling the subpolar North Atlantic. In decades to follow however, this cooling effect would gradually vanish as the Indian Ocean warming acts to strengthen the Atlantic meridional overturning circulation (AMOC). We argue that the historical NAWH can potentially be explained by such atmospheric mechanisms reliant on surface wind changes, while oceanic mechanisms related to AMOC changes become more important on longer timescales. Thus, explaining the North Atlantic temperature trends and particularly the NAWH requires considering both atmospheric and oceanic mechanisms.  more » « less
Award ID(s):
1756682 1741841
PAR ID:
10193518
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite global warming, the sea surface temperature (SST) in the subpolar North Atlantic has decreased since the 1900s. This local cooling, known as the North Atlantic cold blob, signifies a unique role of the subpolar North Atlantic in uptaking heat and hence impacts downstream weather and climate. However, a lack of observational records and their constraints on climate models leave the North Atlantic cold blob formation mechanism inconclusive. Using simulations from phase 6 of Coupled Model Intercomparison Project, we assess the primary processes driving the North Atlantic cold blob within individual models and whether the mechanisms are consistent across models. We show that 11 out of 32 models, which we call “Cold Blob” models, simulate the subpolar North Atlantic cooling over 1900–2014. Further analyzing the heat budget of the subpolar North Atlantic SST shows that models have distinct mechanisms of cold blob formation. While 4 of the 11 Cold Blob models indicate decreased oceanic heat transport convergence (OHTC) as the key mechanism, another four models suggest changes in radiative processes making predominant contributions. The contribution of OHTC and radiative processes is comparable in the remaining three models. Such a model disagreement on the mechanism of cold blob formation may be associated with simulated base-state Atlantic meridional overturning circulation (AMOC) strength, which explains 39% of the intermodel spread in the contribution of OHTC to the simulated cold blob. Models with a stronger base-state AMOC suggest a greater role of OHTC, whereas those with a weaker base-state AMOC indicate that radiative processes are more responsible. This model discrepancy suggests that the cold blob formation mechanism diagnosed from single model should be interpreted with caution. Significance StatementThe mechanisms driving sea surface temperatures over the subpolar North Atlantic to cool since the 1900s remain uncertain due to the lack of direct observations. Here, we use a temperature change decomposition framework to dissect the historical trend of surface temperature simulated in multiple global climate models. The models diverge on whether the subpolar North Atlantic cooling is induced by reduced ocean heat transport convergence or altered radiative processes. Notably, the importance of ocean heat transport convergence is influenced by the simulated base-state strength of Atlantic meridional overturning circulation and the Irminger Sea’s mixed layer depth. This finding cautions against concluding the cooling mechanism from a single model and highlights a need for ongoing observations to constrain AMOC-related climate projection in the subpolar North Atlantic. 
    more » « less
  2. Abstract Interconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOCconnection comes from gradients between the Indian and Atlantic Oceans. TherTIOindex yields the strongest connection of this tropical temperature gradient to theAMOC. Focusing on the internally generated signal in three observational products reveals that an SST-basedAMOCproxy index has closely followed low-frequency changes ofrTIOtemperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that theAMOCproxy index lags simulated mid-latitudeAMOCvariations by 4 ± 4 years. These model simulations reveal the mechanism connectingAMOCvariations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internalrTIOvariations can serve as a multi-decadal precursor ofAMOCchanges with important implications forAMOCdynamics and predictability. 
    more » « less
  3. Abstract Most oceans over the globe have experienced surface warming during the past century, but the subpolar Atlantic is quite otherwise. The sea surface temperature cooling trend to the south of Greenland, known as the North Atlantic Warming Hole, has raised debate over whether it is driven by the slowing of the Atlantic Meridional Overturning Circulation. Here we use observations as a benchmark and climate models as a tool to demonstrate that only models simulating a weakened historical Atlantic overturning can broadly reproduce the observed cooling and freshening in the warming hole region. This, in turn, indicates that the realistic Atlantic overturning slowed between 1900 and 2005, at a rate of −1.01 to −2.97 Sv century−1(1 Sv = 106 m3 s−1), according to a sea-surface-temperature-based fingerprint index estimate. Particularly, the Atlantic overturning slowdown causes an oceanic heat transport divergence across the subpolar North Atlantic, which, while partially offset by enhanced ocean heat uptake, results in cooling over the warming hole region. 
    more » « less
  4. Abstract Deep and abyssal layer decadal temperature trends from the mid‐1980s to the mid‐2010s are mapped globally using Deep Argo and historical ship‐based Conductivity‐Temperature‐Depth (CTD) instrument data. Abyssal warming trends are widespread, with the strongest warming observed around Antarctic Bottom Water (AABW) formation regions. The warming strength follows deep western boundary currents transporting abyssal waters north and decreases with distance from Antarctica. Abyssal cooling trends are found in the North Atlantic and eastern South Atlantic, regions primarily ventilated by North Atlantic Deep Water (NADW). Deep warming trends are prominent in the Southern Ocean south of about 50°S, the Greenland‐Iceland‐Norwegian (GIN) Seas and the western subpolar North Atlantic, with cooling in the eastern subpolar North Atlantic and the subtropical and tropical western North Atlantic. Globally integrated decadal heat content trends of 21.6 (±6.5) TW in the deep and 12.9 (±1.8) TW in the abyssal layer are more certain than previous estimates. 
    more » « less
  5. In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations 
    more » « less