skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DNA Phosphorothioate Modifications Are Widely Distributed in the Human Microbiome
The DNA phosphorothioate (PT) modification existing in many prokaryotes, including bacterial pathogens and commensals, confers multiple characteristics, including restricting gene transfer, influencing the global transcriptional response, and reducing fitness during exposure to chemical mediators of inflammation. While PT-containing bacteria have been investigated in a variety of environments, they have not been studied in the human microbiome. Here, we investigated the distribution of PT-harboring strains and verified their existence in the human microbiome. We found over 2000 PT gene-containing strains distributed in different body sites, especially in the gastrointestinal tract. PT-modifying genes are preferentially distributed within several genera, including Pseudomonas, Clostridioides, and Escherichia, with phylogenic diversities. We also assessed the PT modification patterns and found six new PT-linked dinucleotides (CpsG, CpsT, ApsG, TpsG, GpsC, ApsT) in human fecal DNA. To further investigate the PT in the human gut microbiome, we analyzed the abundance of PT-modifying genes and quantified the PT-linked dinucleotides in the fecal DNA. These results confirmed that human microbiome is a rich reservoir for PT-containing microbes and contains a wide variety of PT modification patterns.  more » « less
Award ID(s):
1709364
PAR ID:
10196344
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biomolecules
Volume:
10
Issue:
8
ISSN:
2218-273X
Page Range / eLocation ID:
1175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sea cucumbers have been overharvested world-wide, making assessments of their ecological effects challenging, but recent research demonstrated that sea cucumbers increase coral survival via disease suppression and were therefore important for facilitating reef health. The mechanisms underpinning the sea cucumber-coral interaction therefore are not well understood but are likely mediated through sea cucumber grazing of microbes from reef sediments. We explored how sea cucumber grazing alters the sediment microbiome by leveraging a healthy sea cucumber population on a reef in French Polynesia. We used quantitative PCR, 16S rRNA gene sequencing, and shotgun metagenomics to compare the sediment microbiome in cages placed in situ with or without sea cucumbers. We hypothesized that grazing would lower microbial biomass, change sediment microbiome composition, and deplete sediment metagenomes of anaerobic metabolisms, likely due to aeration of the sediments. Sea cucumber grazing resulted in a 75% reduction in 16S rRNA gene abundances and reshaped microbiome composition, causing a significant decrease of cyanobacteria and other phototrophs relative to ungrazed sediments. Grazing also resulted in a depletion of genes associated with cyanotoxin synthesis, suggesting a potential link to coral health. In contrast to expectations, grazed sediment metagenomes were enriched with marker genes of diverse anaerobic or microaerophilic metabolisms, including those encoding high oxygen affinity cytochrome oxidases. This enrichment differs from patterns linked to other bioturbating invertebrates. We hypothesize that grazing enriches anaerobic processes in sediment microbiomes through removal of oxygen-producing autotrophs, fecal deposition of sea cucumber gut-associated anaerobes, or modification of sediment diffusibility. These results suggest that sea cucumber harvesting influences biogeochemical processes in reef sediments, potentially mediating coral survival by altering the sediment microbiome and its production of coral-influencing metabolites. 
    more » « less
  2. Wolfe, Kenneth (Ed.)
    Abstract The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Although loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between five and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms. 
    more » « less
  3. Kaltenpoth, Martin (Ed.)
    ABSTRACT Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiontSnodgrassella alvi. We are also able to engineer the genomes of multiple strains ofS. alviand another species,Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont,Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout inS. alviusing this approach isrecA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCEHoney bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health. 
    more » « less
  4. Abstract Variation in DNA methylation is associated with many ecological and life history traits, including niche breadth and lifespan. In vertebrates, DNA methylation occurs almost exclusively at “CpG” dinucleotides. Yet, how variation in the CpG content of the genome impacts organismal ecology has been largely overlooked. Here, we explore associations between promoter CpG content, lifespan and niche breadth among 60, amniote vertebrate species. The CpG content of 16 functionally relevant gene promoters was strongly, positively associated with lifespan in mammals and reptiles, but was not related to niche breadth. Possibly, by providing more substrate for CpG methylation to occur, high promoter CpG content extends the time taken for deleterious, age-related errors in CpG methylation patterns to accumulate, thereby extending lifespan. The association between CpG content and lifespan was driven by gene promoters with intermediate CpG enrichment—those known to be predisposed to regulation by methylation. Our findings provide novel support for the idea that high CpG content has been selected for in long-lived species to preserve the capacity for gene expression regulation by CpG methylation. Intriguingly, promoter CpG content was also dependent on gene function in our study; immune genes had on average 20% less CpG sites than metabolic- and stress-related genes. 
    more » « less
  5. Hayer, Juliette (Ed.)
    Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%–95% of genomes) could be divided into those closely linked to strain background (“strain-concentrated”) and those highly variable within strains (“strain-diffuse”). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions. 
    more » « less