skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee
Abstract

Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

 
more » « less
Award ID(s):
1457659 1921562
NSF-PAR ID:
10198019
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts. 
    more » « less
  2. Global declines in abundance and diversity of insects are now well-documented and increasingly concerning given the critical and diverse roles insects play in all ecosystems. Habitat loss, invasive species, and anthropogenic chemicals are all clearly detrimental to insect populations, but mounting evidence implicates climate change as a key driver of insect declines globally. Warming temperatures combined with increased variability may expose organisms to extreme heat that exceeds tolerance, potentially driving local extirpations. In this context, heat tolerance limits (e.g., critical thermal maximum, CTmax) have been measured for many invertebrates and are often closely linked to climate regions where animals are found. However, temperatures well below CTmaxmay also have pronounced effects on insects, but have been relatively less studied. Additionally, many insects with out-sized ecological and economic footprints are colonial (e.g., ants, social bees, termites) such that effects of heat on individuals may propagate through or be compensated by the colony. For colonial organisms, measuring direct effects on individuals may therefore reveal little about population-level impacts of changing climates. Here, we use bumble bees (genusBombus) as a case study to highlight how a limited understanding of heat effects below CTmaxand of colonial impacts and responses both likely hinder our ability to explain past and predict future climate change impacts. Insights from bumble bees suggest that, for diverse invertebrates, predicting climate change impacts will require a more nuanced understanding of the effects of heat exposure and additional studies of carry-over effects and compensatory responses by colonies.

     
    more » « less
  3. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  4. Abstract

    Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole,Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration andRNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.

     
    more » « less
  5. Abstract

    Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits ofMegalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees’ thermal limits.Megaloptadisplayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMinincreased with increasing body size across all bees but decreased with increasing body size and ovary area inMegalopta, suggesting a reproductive cost or differences in thermal environments. CTMaxdid not increase with increasing body size or ovary area. These results indicate a greater sensitivity ofMegaloptato temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.

     
    more » « less