skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the sources and transport processes during extreme ammonia episodes in the US Corn Belt
Atmospheric ammonia (NH3) is the primary form of reactive nitrogen (Nr) and a precursor ofammonium (NH4+) aerosols. Ammonia has been linked to adverse impacts on human health, the loss ofecosystem biodiversity, and plays a key role in aerosol radiative forcing. The midwestern United States is themajor NH3source in North America because of dense livestock operations and the high use of syntheticnitrogen fertilizers. Here, we combine tall‐tower (100 m) observations in Minnesota and Weather Researchand Forecasting model coupled with Chemistry (WRF‐Chem) modeling to investigate high and low NH3emission episodes within the U.S. Corn Belt to improve our understanding of the distribution of emissionsources and transport processes. We examined observations and performed model simulations for cases inFebruary through November of 2017 and 2018. The results showed the following: (1) Peak emissions inNovember 2017 were enhanced by above‐normal air temperatures, implying aQ10(i.e., the change in NH3emissions for a temperature increase of 10°C) of 2.5 for emissions. (2) The intensive livestock emissionsrom northern Iowa, approximately 400 km away from the tall tower, accounted for 17.6% of theabundance in tall‐tower NH3mixing ratios. (3) Ammonia mixing ratios in the innermost domain 3frequently (i.e., 336 hr, 48% of November 2017) exceeded 5.3 ppb, an important air quality health standard.(4) In November 2017, simulated NH3net ecosystem exchange (the difference between NH3emissionsand dry deposition) accounted for 60–65% of gross NH3emissions for agricultural areas and was2.8–3.1 times the emissions of forested areas. (5) We estimated a mean annual NH3net ecosystem exchangeof 1.60 ± 0.06 nmol · m−2·s−1for agricultural lands and−0.07 ± 0.02 nmol · m−2·s−1for forested lands.These results imply that future warmer fall temperatures will enhance agricultural NH3emissions, increasethe frequency of dangerous NH3episodes, and enhance dry NH3deposition in adjacent forested lands.  more » « less
Award ID(s):
1640337
PAR ID:
10199413
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of geophysical research
Volume:
125
ISSN:
0148-0227
Page Range / eLocation ID:
e2019JD031207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atmospheric ammonia (NH3) has increased dramatically as a consequence of the production of synthetic nitrogen (N) fertilizer and proliferation of intensive livestock systems. It is a chemical of environmental concern as it readily reacts with atmospheric acids to produce fine particulate matter and indirectly contributes to nitrous oxide (N2O) emissions. Here, we present the first tall tower observations of NH3within the U.S. Corn Belt for the period April 2017 through December 2018. Hourly average NH3mixing ratios were measured at 100 and 56 m above the ground surface and fluxes were estimated using a modified gradient approach. The highest NH3mixing ratios (>30 nmol mol−1) occurred during early spring and late fall, coinciding with the timing of fertilizer application within the region and the occurrence of warm air temperatures. Net ecosystem NH3exchange was greatest in spring and fall with peak emissions of about +50 nmol m−2 s−l. Annual NH3emissions estimated using state‐of‐the‐art inventories ranged from 0.6 to 1.4 × the mean annual gross tall tower fluxes (+2.1 nmol m−2 s−1). If the tall tower observations are representative of the Upper Midwest and broader U.S. Corn Belt regions, the annual gross emissions were +720 Gg NH3‐N y−1and +1,340 Gg NH3‐N y−1, respectively. Finally, considering the N2O budget over the same region, we estimated total reactive N emissions (i.e., N2O + NH3) of approximately 1,790 Gg N y−1from the U.S. Corn Belt, representing ~23% of the current annual new N input. 
    more » « less
  2. Ozone deposition measurements in forested environments are of interest to constrain background processes in models as well as better identify ozone exposure to the ecosystem. Ozone deposition in forested environments can arise through stomatal conductance in plants and dry deposition to soils. As a part of the CHEESEHEAD 19 field campaign, ozone measurements were obtained at two different heights (120 m and 30 m) on a tall tower. In comparison to those measurements, a hexacopter UAS was flown with a small, lightweight ozone monitor and meteorological sensor measuring temperature and humidity. The hexacopter was hovered at certain altitudes to determine ozone concentration gradients. The vertical gradients observed will be discussed in context of tower ozone concentration measurements and other meteorological parameters 
    more » « less
  3. null (Ed.)
    Abstract. Mixing ratios of volatile organic compounds (VOCs) were recordedin two field campaigns in central Beijing as part of the Air Pollution andHuman Health in a Chinese Megacity (APHH) project. These data were used tocalculate, for the first time in Beijing, the surface–atmosphere fluxes ofVOCs using eddy covariance, giving a top-down estimation of VOC emissionsfrom a central area of the city. The results were then used to evaluate theaccuracy of the Multi-resolution Emission Inventory for China (MEIC). TheAPHH winter and summer campaigns took place in November and December 2016and May and June 2017, respectively. The largest VOC fluxes observed were ofsmall oxygenated compounds such as methanol, ethanol + formic acid andacetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer.A large flux of isoprene was observed in the summer, with an average emissionrate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs madeup 60 % of the molar VOC flux measured, when fluxes were scaled by ozoneformation potential and peroxyacyl nitrate (PAN) formation potential thehigh reactivity of isoprene and monoterpenes meant that these speciesrepresented 30 % and 28 % of the flux contribution to ozone and PANformation potential, respectively. Comparison of measured fluxes with theemission inventory showed that the inventory failed to capture the magnitudeof VOC emissions at the local scale. 
    more » « less
  4. Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to “zero emission vehicles” is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogencontaining organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out. 
    more » « less
  5. Abstract Livestock are a critical part of our food systems, yet their abundance globally has been cited as a driver of many environmental and human health concerns. Issues such as soil, water, and air pollution, greenhouse gas emissions, aquifer depletion, antimicrobial resistance genes, and zoonotic disease outbreaks have all been linked to livestock operations. While many studies have examined these issues at depth at local scales, it has been difficult to complete studies at regional or national scales due to the dearth of livestock data, hindering pollution mitigation or response time for tracing and monitoring disease outbreaks. In the U.S. the National Agricultural Statistics Service completes a Census once every 5 years that includes livestock, but data are only available at the county level leaving little inference that can be made at such a coarse spatiotemporal scale. While other data exist through some regulated permitting programs, there are significant data gaps in where livestock are raised, how many livestock are on site at a given time, and how these livestock and, importantly, their waste emissions, are managed. In this perspective, we highlight the need for better livestock data, then discuss the accessibility and key limitations of currently available data. We then feature some recent work to improve livestock data availability through remote-sensing and machine learning, ending with our takeaways to address these data needs for the future of environmental and public health management. 
    more » « less