skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CooBa: Cross-project Bug Localization via Adversarial Transfer Learning
Bug localization plays an important role in software quality control. Many supervised machine learning models have been developed based on historical bug-fix information. Despite being successful, these methods often require sufficient historical data (i.e., labels), which is not always available especially for newly developed software projects. In response, cross-project bug localization techniques have recently emerged whose key idea is to transferring knowledge from label-rich source project to locate bugs in the target project. However, a major limitation of these existing techniques lies in that they fail to capture the specificity of each individual project, and are thus prone to negative transfer.To address this issue, we propose an adversarial transfer learning bug localization approach, focusing on only transferring the common characteristics (i.e., public information) across projects. Specifically, our approach (CooBa) learns the indicative public information from cross-project bug reports through a shared encoder, and extracts the private information from code files by an individual feature extractor for each project. CooBa further incorporates adversarial learning mechanism to ensure that public information shared between multiple projects could be effectively extracted. Extensive experiments on four large-scale real-world data sets demonstrate that the proposed CooBa significantly outperforms the state of the art techniques.  more » « less
Award ID(s):
1939725 1947135 1715385
PAR ID:
10200359
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IJCAI
Page Range / eLocation ID:
3565 to 3571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many users and contributors of large open-source projects report software defects or enhancement requests (known as bug reports) to the issue-tracking systems. However, they sometimes report issues that have already been reported. First, they may not have time to do sufficient research on existing bug reports. Second, they may not possess the right expertise in that specific area to realize that an existing bug report is essentially elaborating on the same matter, perhaps with a different wording. In this paper, we propose a novel approach based on machine learning methods that can automatically detect duplicate bug reports in an open bug repository based on the textual data in the reports. We present six alternative methods: Topic modeling, Gaussian Na¨ıve Bayes, deep learning, time-based organization, clustering, and summarization using a generative pre-trained transformer large language model. Additionally, we introduce a novel threshold-based approach for duplicate identification, in contrast to the conventional top-k selection method that has been widely used in the literature. Our approach demonstrates promising results across all the proposed methods, achieving accuracy rates ranging from the high 70%’s to the low 90%’s. We evaluated our methods on a public dataset of issues belonging to an Eclipse open-source project. 
    more » « less
  2. One of the most important tasks related to managing bug reports is localizing the fault so that a fix can be applied. As such, prior work has aimed to automate this task of bug localization by formulating it as an information retrieval problem, where potentially buggy files are retrieved and ranked according to their textual similarity with a given bug report. However, there is often a notable semantic gap between the information contained in bug reports and identifiers or natural language contained within source code files. For user-facing software, there is currently a key source of information that could aid in bug localization, but has not been thoroughly investigated - information from the GUI. We investigate the hypothesis that, for end user-facing applications, connecting information in a bug report with information from the GUI, and using this to aid in retrieving potentially buggy files, can improve upon existing techniques for bug localization. To examine this phenomenon, we conduct a comprehensive empirical study that augments four baseline techniques for bug localization with GUI interaction information from a reproduction scenario to (i) filter out potentially irrelevant files, (ii) boost potentially relevant files, and (iii) reformulate text-retrieval queries. To carry out our study, we source the current largest dataset of fully-localized and reproducible real bugs for Android apps, with corresponding bug reports, consisting of 80 bug reports from 39 popular open-source apps. Our results illustrate that augmenting traditional techniques with GUI information leads to a marked increase in effectiveness across multiple metrics, including a relative increase in Hits@10 of 13-18%. Additionally, through further analysis, we find that our studied augmentations largely complement existing techniques. 
    more » « less
  3. Impact analysis (IA) is a critical software maintenance task that identifies the effects of a given set of code changes on a larger software project with the intention of avoiding potential adverse effects. IA is a cognitively challenging task that involves reasoning about the abstract relationships between various code constructs. Given its difficulty, researchers have worked to automate IA with approaches that primarily use coupling metrics as a measure of the connectedness of different parts of a software project. Many of these coupling metrics rely on static, dynamic, or evolutionary information and are based on heuristics that tend to be brittle, require expensive execution analysis, or large histories of co-changes to accurately estimate impact sets. In this paper, we introduce a novel IA approach, called ATHENA, that combines a software system's dependence graph information with a conceptual coupling approach that uses advances in deep representation learning for code without the need for change histories and execution information. Previous IA benchmarks are small, containing less than ten software projects, and suffer from tangled commits, making it difficult to measure accurate results. Therefore, we constructed a large-scale IA benchmark, from 25 open-source software projects, that utilizes fine-grained commit information from bug fixes. On this new benchmark, our best performing approach configuration achieves an mRR, mAP, and HIT@10 score of 60.32%, 35.19%, and 81.48%, respectively. Through various ablations and qualitative analyses, we show that ATHENA's novel combination of program dependence graphs and conceptual coupling information leads it to outperform a simpler baseline by 10.34%, 9.55%, and 11.68% with statistical significance. 
    more » « less
  4. Increasing studies have shown bugs in multi-language software as a critical loophole in modern software quality assurance, especially those induced by language interactions (i.e., multilingual bugs). Yet existing tool support for bug detection/localization remains largely limited to single-language software, despite the long-standing prevalence of multi-language systems in various real-world software domains. Extant static/dynamic analysis and deep learning (DL) based approaches all face major challenges in addressing multilingual bugs. In this paper, we present xLoc, a DL-based technique/tool for detecting and localizing multilingual bugs. Motivated by results of our bug-characteristics study on top locations of multilingual bugs, xLoc first learns the general knowledge relevant to differentiating various multilingual control-flow structures. This is achieved by pre-training a Transformer model with customized position encoding against novel objectives. Then, xLoc learns task-specific knowledge for the task of multilingual bug detection/localization, through another new position encoding scheme (based on cross-language API vicinity) that allows for the model to attend particularly to control-flow constructs that bear most multilingual bugs during fine-tuning. We have implemented xLoc for Python-C software and curated a dataset of 3,770 buggy and 15,884 non-buggy Python-C samples, which enabled our extensive evaluation of xLoc against two state-of-the-art baselines: fine-tuned CodeT5 and zero-shot ChatGPT. Our results show that xLoc achieved 94.98% F1 and 87.24%@Top-1 accuracy, which are significantly (up to 162.88% and 511.75%) higher than the baselines. Ablation studies further confirmed significant contributions of each of the novel design elements in xLoc. With respective bug-location characteristics and labeled bug datasets for fine-tuning, our design may be applied to other language combinations beyond Python-C. 
    more » « less
  5. Background: Machine learning techniques have been widely used and demonstrate promising performance in many software security tasks such as software vulnerability prediction. However, the class ratio within software vulnerability datasets is often highly imbalanced (since the percentage of observed vulnerability is usually very low). Goal: To help security practitioners address software security data class imbalanced issues and further help build better prediction models with resampled datasets. Method: We introduce an approach called Dazzle which is an optimized version of conditional Wasserstein Generative Adversarial Networks with gradient penalty (cWGAN-GP). Dazzle explores the architecture hyperparameters of cWGAN-GP with a novel optimizer called Bayesian Optimization. We use Dazzle to generate minority class samples to resample the original imbalanced training dataset. Results: We evaluate Dazzle with three software security datasets, i.e., Moodle vulnerable files, Ambari bug reports, and JavaScript function code. We show that Dazzle is practical to use and demonstrates promising improvement over existing state-of-the-art oversampling techniques such as SMOTE (e.g., with an average of about 60% improvement rate over SMOTE in recall among all datasets). Conclusion: Based on this study, we would suggest the use of optimized GANs as an alternative method for security vulnerability data class imbalanced issues. 
    more » « less