skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: COMBS: First Open-Source Based Benchmark Suite for Multi-physics Simulation Relevant HPC Research
Recent scientific computing increasingly relies on multi-scale multi-physics simulations to enhance predictive capabilities by replacing a suite of stand-alone simulation codes that independently simulate various physical phenomena. Inevitably, multi-physics simulation demands high performance computing (HPC) through advanced hardware and software accelerating due to its intensive computing workload and run-time communication needs. Thus, its research has become a hotspot across different disciplines. However, it is observed that most benchmarks used in the evaluation of corresponding work are through commercial or in-house codes. Then, the lack of accessible open-source multi-physics benchmark suites has presented a challenge in uniformly evaluating simulation performance across related disciplines. This work proposes the first open-source based benchmark suite with 12 selected benchmarks for research in multi-physics simulation, the Clarkson Open-Source Multi-physics Benchmark Suite (COMBS). Multiple metrics have been gathered for these benchmarks, such as instructions per second and memory usage. Also provided are build and benchmark scripts to improve usability. Additionally, their source codes and installation guides are available for downloading through a github repository built by the authors. The selected benchmarks are from key applications of multi-physics simulation and highly cited publications. It is believed that this benchmark suite will facilitate to harness the full potential of HPC research in the field of multi-physics simulation.  more » « less
Award ID(s):
1852102
NSF-PAR ID:
10200370
Author(s) / Creator(s):
Date Published:
Journal Name:
Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science
Volume:
12452
Page Range / eLocation ID:
3-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Standard Performance Evaluation Corporation (SPEC) CPU benchmark has been widely used as a measure of computing performance for decades. The SPEC is an industry-standardized, CPU-intensive benchmark suite and the collective data provide a proxy for the history of worldwide CPU and system performance. Past efforts have not provided or enabled answers to questions such as, how has the SPEC benchmark suite evolved empirically over time and what micro-architecture artifacts have had the most influence on performance? - have any micro-benchmarks within the suite had undue influence on the results and comparisons among the codes? - can the answers to these questions provide insights to the future of computer system performance? To answer these questions, we detail our historical and statistical analysis of specific hardware artifacts (clock frequencies, core counts, etc.) on the performance of the SPEC benchmarks since 1995. We discuss in detail several methods to normalize across benchmark evolutions. We perform both isolated and collective sensitivity analyses for various hardware artifacts and we identify one benchmark (libquantum) that had somewhat undue influence on performance outcomes. We also present the use of SPEC data to predict future performance. 
    more » « less
  2. MLCommons is an effort to develop and improve the artificial intelligence (AI) ecosystem through benchmarks, public data sets, and research. It consists of members from start-ups, leading companies, academics, and non-profits from around the world. The goal is to make machine learning better for everyone. In order to increase participation by others, educational institutions provide valuable opportunities for engagement. In this article, we identify numerous insights obtained from different viewpoints as part of efforts to utilize high-performance computing (HPC) big data systems in existing education while developing and conducting science benchmarks for earthquake prediction. As this activity was conducted across multiple educational efforts, we project if and how it is possible to make such efforts available on a wider scale. This includes the integration of sophisticated benchmarks into courses and research activities at universities, exposing the students and researchers to topics that are otherwise typically not sufficiently covered in current course curricula as we witnessed from our practical experience across multiple organizations. As such, we have outlined the many lessons we learned throughout these efforts, culminating in the need forbenchmark carpentryfor scientists using advanced computational resources. The article also presents the analysis of an earthquake prediction code benchmark while focusing on the accuracy of the results and not only on the runtime; notedly, this benchmark was created as a result of our lessons learned. Energy traces were produced throughout these benchmarks, which are vital to analyzing the power expenditure within HPC environments. Additionally, one of the insights is that in the short time of the project with limited student availability, the activity was only possible by utilizing a benchmark runtime pipeline while developing and using software to generate jobs from the permutation of hyperparameters automatically. It integrates a templated job management framework for executing tasks and experiments based on hyperparameters while leveraging hybrid compute resources available at different institutions. The software is part of a collection calledcloudmeshwith its newly developed components, cloudmesh-ee (experiment executor) and cloudmesh-cc (compute coordinator).

     
    more » « less
  3. Modern High Performance Computing (HPC) systems are built with innovative system architectures and novel programming models to further push the speed limit of computing. The increased complexity poses challenges for performance portability and performance evaluation. The Standard Performance Evaluation Corporation (SPEC) has a long history of producing industry-standard benchmarks for modern computer systems. SPEC’s newly released SPEChpc 2021 benchmark suites, developed by the High Performance Group, are a bold attempt to provide a fair and objective benchmarking tool designed for stateof-the-art HPC systems. With the support of multiple host and accelerator programming models, the suites are portable across both homogeneous and heterogeneous architectures. Different workloads are developed to fit system sizes ranging from a few compute nodes to a few hundred compute nodes. In this work we present our first experiences in performance benchmarking the new SPEChpc2021 suites and evaluate their portability and basic performance characteristics on various popular and emerging HPC architectures, including x86 CPU, NVIDIA GPU, and AMD GPU. This study provides a first-hand experience of executing the SPEChpc 2021 suites at scale on production HPC systems, discusses real-world use cases, and serves as an initial guideline for using the benchmark suites. 
    more » « less
  4. Open OnDemand is an open source project designed to lower the barrier to HPC use across many diverse disciplines. Here we describe the main features of the platform, give several use cases of Open On-Demand and discuss how we measure success. We end the paper with a discussion of the future project roadmap. Pre-conference paper submitted to ISC19 Workshop on Interactive High-Performance Computing. 
    more » « less
  5. null ; null ; null ; null ; null ; null (Ed.)
    The National Ecological Observatory Network (NEON) is a continental-scale observatory with sites across the US collecting standardized ecological observations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision data in near-real time to the NEON Data Portal and to High Performance Computing (HPC) systems, running ensembles of Earth system models (ESMs) that assimilate the data. For the first time gridded EC data products and response functions promise to offset pervasive observational biases through evaluating, benchmarking, optimizing parameters, and training new ma- chine learning parameterizations within ESMs all at the same model-grid scale. Leveraging open-source software for EC data analysis, we are al- ready building software infrastructure for integration of near-real time data streams into the International Land Model Benchmarking (ILAMB) package for use by the wider research community. We will present a perspective on the design and integration of end-to-end infrastructure for data acquisition, edge computing, HPC simulation, analysis, and validation, where Artificial Intelligence (AI) approaches are used throughout the distributed workflow to improve accuracy and computational performance. 
    more » « less