Serverless computing enables a new way of building and scaling cloud applications by allowing developers to write fine-grained serverless or cloud functions. The execution duration of a cloud function is typically short---ranging from a few milliseconds to hundreds of seconds. However, due to resource contentions caused by public clouds' deep consolidation, the function execution duration may get significantly prolonged and fail to accurately account for the function's true resource usage. We observe that the function duration can be highly unpredictable with huge amplification of more than 50× for an open-source FaaS platform (OpenLambda). Our experiments show that the OS scheduling policy of cloud functions' host server can have a crucial impact on performance. The default Linux scheduler, CFS (Completely Fair Scheduler), being oblivious to workloads, frequently context-switches short functions, causing a turnaround time that is much longer than their service time. We propose SFS (Smart Function Scheduler), which works entirely in the user space and carefully orchestrates existing Linux FIFO and CFS schedulers to approximate Shortest Remaining Time First (SRTF). SFS uses two-level scheduling that seamlessly combines a new FILTER policy with Linux CFS, to trade off increased duration of long functions for significant performance improvement for short functions. We implement SFS in the Linux user space and port it to OpenLambda. Evaluation results show that SFS significantly improves short functions' duration with a small impact on relatively longer functions, compared to CFS.
more »
« less
Sequoia: enabling quality-of-service in serverless computing
Serverless computing is a rapidly growing paradigm that easily harnesses the power of the cloud. With serverless computing, developers simply provide an event-driven function to cloud providers, and the provider seamlessly scales function invocations to meet demands as event-triggers occur. As current and future serverless offerings support a wide variety of serverless applications, effective techniques to manage serverless workloads becomes an important issue. This work examines current management and scheduling practices in cloud providers, uncovering many issues including inflated application run times, function drops, inefficient allocations, and other undocumented and unexpected behavior. To fix these issues, a new quality-of-service function scheduling and allocation framework, called Sequoia, is designed. Sequoia allows developers or administrators to easily def ne how serverless functions and applications should be deployed, capped, prioritized, or altered based on easily configured, flexible policies. Results with controlled and realistic workloads show Sequoia seamlessly adapts to policies, eliminates mid-chain drops, reduces queuing times by up to 6.4X, enforces tight chain-level fairness, and improves run-time performance up to 25X.
more »
« less
- Award ID(s):
- 1908910
- PAR ID:
- 10201218
- Date Published:
- Journal Name:
- SoCC '20: Proceedings of the 11th ACM Symposium on Cloud Computing
- Page Range / eLocation ID:
- 311 to 327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Serverless computing is a promising new event- driven programming model that was designed by cloud vendors to expedite the development and deployment of scalable web services on cloud computing systems. Using the model, developers write applications that consist of simple, independent, stateless functions that the cloud invokes on-demand (i.e. elastically), in response to system-wide events (data arrival, messages, web requests, etc.). In this work, we present STOIC (Serverless TeleOperable HybrId Cloud), an application scheduling and deployment system that extends the serverless model in two ways. First, it uses the model in a distributed setting and schedules application functions across multiple cloud systems. Second, STOIC sup- ports serverless function execution using hardware acceleration (e.g. GPU resources) when available from the underlying cloud system. We overview the design and implementation of STOIC and empirically evaluate it using real-world machine learning applications and multi-tier (e.g. edge-cloud) deployments. We find that STOIC’s combined use of edge and cloud resources is able to outperform using either cloud in isolation for the applications and datasets that we consider.more » « less
-
Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments. In this work, we design and develop STOIC (Serverless TeleOperable HybrId Cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. Finally, we empirically evaluate STOIC using real-world machine learning applications and multi-tier IoT deployments (edge and cloud). We show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%.more » « less
-
The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms.more » « less
-
Serverless Computing has quickly emerged as a dominant cloud computing paradigm, allowing developers to rapidly prototype event-driven applications using a composition of small functions that each perform a single logical task. However, many such application workflows are based in part on publicly-available functions developed by third-parties, creating the potential for functions to behave in unexpected, or even malicious, ways. At present, developers are not in total control of where and how their data is flowing, creating significant security and privacy risks in growth markets that have embraced serverless (e.g., IoT). As a practical means of addressing this problem, we present Valve, a serverless platform that enables developers to exert complete fine-grained control of information flows in their applications. Valve enables workflow developers to reason about function behaviors, and specify restrictions, through auditing of network-layer information flows. By proxying network requests and propagating taint labels across network flows, Valve is able to restrict function behavior without code modification. We demonstrate that Valve is able defend against known serverless attack behaviors including container reuse-based persistence and data exfiltration over cloud platform APIs with less than 2.8% runtime overhead, 6.25% deployment overhead and 2.35% teardown overhead.more » « less
An official website of the United States government

