skip to main content


Title: Wind-induced Response Characteristics of a Yawed and Inclined Cable in ABL Wind
Inclined cables used in bridges or other infrastructures are vulnerable to unsteady wind-induced loads producing moderate- to large-amplitude vibration that may result in damage or failure of the cables, resulting in catastrophic failure of the structure they secure. In the present study, wind-induced response of an inclined smooth cable was studied through wind tunnel measurements using a flexible cable model for a better understanding of the vibration characteristics of structural cables in atmospheric boundary layer wind. For this purpose, in-plane and out-of-plane responses of a sagged and a non-sagged flexible cable were recorded by four accelerometers. Four cases with different yaw and inclination angles of a cable with approximate sag ratios of 1/10 were studied to investigate the wind directionality effect on its excitation mode(s) and response amplitude. Cable tension was also measured during all experiments to assess the correlation of wind speed, excitation vibration mode, and natural frequency of the cable with change in cable tension. Additionally, two inclined cables with no sag were tested to determine the influence of sag of a cable on its vibration characteristics. In the second part of this study, a series of finite element analyses were conducted to predict the wind-induced aerodynamic damping of an inclined bridge cable. Experimental results showed that excitation mode(s) of a cable depend on wind speed, inclination angle, and sag ratio and cable tension. First, second, and third vibration modes were observed at a low wind speed for different test cases, whereas higher vibration modes were observed to contribute to the cable response at high wind speeds. Moreover, it was seen that the cable tension significantly increased with wind speed resulting in increased value of the excited natural frequency. Numerical results obtained through finite element analysis of an inclined full-scale cable showed that the criteria that are based on section models can underestimate the critical reduced velocity for dry cable galloping.  more » « less
Award ID(s):
1537917
NSF-PAR ID:
10203854
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Engineering structures
Volume:
214
ISSN:
1873-7323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle. 
    more » « less
  2. null (Ed.)
    Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×10^4 to 2.67×10^5 for smooth cable and 2×10^4 to 1.01×10^5 for grooved cable) and yaw angles ranging from 0º to 45º while the upstream model was fixed at various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study. 
    more » « less
  3. Context.T Tauri stars are low-mass young stars whose disks provide the setting for planet formation, which is one of the most fundamental processes in astronomy. Yet the mechanisms of this are still poorly understood. SU Aurigae is a widely studied T Tauri star and here we present original state-of-the-art interferometric observations with better uv and baseline coverage than previous studies.

    Aims.We aim to investigate the characteristics of the circumstellar material around SU Aur, and constrain the disk geometry, composition and inner dust rim structure.

    Methods.The MIRC-X instrument at CHARA is a six-telescope optical beam combiner offering baselines up to 331 m. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrained the physical parameters of the disk.

    Results.Image reconstruction reveals a highly inclined disk with a slight asymmetry consistent with inclination effects obscuring the inner disk rim through absorption of incident star light on the near side and thermal re-emission/scattering of the far side. Geometric models find that the underlying brightness distribution is best modelled as a Gaussian with a Full-Width Half-Maximum of 1.53 ± 0.01 mas at an inclination of 56.9 ± 0.4° and a minor axis position angle of 55.9 ± 0.5°. Radiative transfer modelling shows a flared disk with an inner radius at 0.16 au which implies a grain size of 0.14 μm assuming astronomical silicates and a scale height of 9.0 au at 100 au. In agreement with the literature, only the dusty disk wind successfully accounts for the near infrared excess by introducing dust above the mid-plane.

    Conclusions.Our results confirm and provide better constraints than previous inner disk studies of SU Aurigae. We confirm the presence of a dusty disk wind in the cicumstellar environment, the strength of which is enhanced by a late infall event which also causes very strong misalignments between the inner and outer disks.

     
    more » « less
  4. Abstract

    Ambient vibration measurements can detect resonance frequency changes related to rock slope instability damage or boundary condition changes during progressive failure. However, the impact of slope kinematics on resonance changes and the expected form and sensitivity of frequency evolution during destabilization require clarification to improve the implementation of this technique across diverse settings. Since instrumented rock slope failures are rare, numerical modeling is needed to study the anticipated spectral response from in situ monitoring. We used 2D distinct‐element modeling to evaluate the sensitivity and evolution of rock slope resonance behavior for slab toppling, flexural toppling, and planar sliding instabilities during progressive failure. Model simulations revealed that fundamental resonance frequency decreases between 20% and 60% with changes correlated with increasing length of open joints. Changes to higher‐order frequencies associated with landslide sub‐volumes were also detectable for cases with multiple fracture networks. Resonance behavior was most pronounced for failures dominated by steeply dipping open tension cracks, that is, flexural and slab toppling. Additionally, amplification patterns across the slope varied for the flexural toppling and sliding cases, providing potential new information with which to characterize landslide failure mechanisms using ambient vibration array measurements. Our results demonstrate landslide characteristics well‐suited for in situ ambient resonance monitoring and provide new data describing the anticipated changes in resonance frequencies during progressive rock slope failure.

     
    more » « less
  5. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less