skip to main content


Title: Simulating JWST deep extragalactic imaging surveys and physical parameter recovery
We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <   z  <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log( M * / M ⊙ ) > 6 and redshifts of 0 <   z  <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z  >  5 galaxy samples can be reduced to < 0.01 arcmin −2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <   z  <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes m UV  <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z  ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.  more » « less
Award ID(s):
1701546
NSF-PAR ID:
10204904
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
640
ISSN:
0004-6361
Page Range / eLocation ID:
A67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the discovery of four galaxy candidates observed 450–600 Myr after the Big Bang with photometric redshifts betweenz∼ 8.3 and 10.2 measured using James Webb Space Telescope (JWST) NIRCam imaging of the galaxy cluster WHL0137−08 observed in eight filters spanning 0.8–5.0μm, plus nine Hubble Space Telescope filters spanning 0.4–1.7μm. One candidate is gravitationally lensed with a magnification ofμ∼ 8, while the other three are located in a nearby NIRCam module with expected magnifications ofμ≲ 1.1. Using SED fitting, we estimate the stellar masses of these galaxies are typically in the rangelogM/M= 8.3–8.7. All appear young, with mass-weighted ages <240 Myr, low dust contentAV< 0.15 mag, and specific star formation rates sSFR ∼0.25–10 Gyr−1for most. Onez∼ 9 candidate is consistent with an age <5 Myr and an sSFR ∼10 Gyr−1, as inferred from a strong F444W excess, implying [Oiii]+Hβrest-frame equivalent width ∼2000 Å, although an olderz∼ 10 object is also allowed. Anotherz∼ 9 candidate is lensed into an arc 2.″4 long with a magnification ofμ∼ 8. This arc is the most spatially resolved galaxy atz∼ 9 known to date, revealing structures ∼30 pc across. Follow-up spectroscopy of WHL0137−08 with JWST/NIRSpec will be useful to spectroscopically confirm these high-redshift galaxy candidates and to study their physical properties in more detail.

     
    more » « less
  2. ABSTRACT

    We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.

     
    more » « less
  3. ABSTRACT Galaxy clustering measurements can be used to constrain many aspects of galaxy evolution, including galaxy host halo masses, satellite quenching efficiencies, and merger rates. We simulate JWST galaxy clustering measurements at z ∼ 4–10 by utilizing mock galaxy samples produced by an empirical model, the universemachine. We also adopt the survey footprints and typical depths of the planned joint NIRCam and NIRSpec Guaranteed Time Observation program planned for Cycle 1 to generate realistic JWST survey realizations and to model high-redshift galaxy selection completeness. We find that galaxy clustering will be measured with ≳5σ significance at z ∼ 4–10. Halo mass precisions resulting from Cycle 1 angular clustering measurements will be ∼0.2 dex for faint (−18 ≳ $\mathit {M}_{\mathrm{UV}}^{ }$ ≳ −19) galaxies at z ∼ 4–10 as well as ∼0.3 dex for bright ($\mathit {M}_{\mathrm{UV}}^{ }$ ∼ −20) galaxies at z ∼ 4–7. Dedicated spectroscopic follow-up over ∼150 arcmin2 would improve these precisions by ∼0.1 dex by removing chance projections and low-redshift contaminants. Future JWST observations will therefore provide the first constraints on the stellar–halo mass relation in the epoch of reionization and substantially clarify how this relation evolves at z > 4. We also find that ∼1000 individual satellites will be identifiable at z ∼ 4–8 with JWST, enabling strong tests of satellite quenching evolution beyond currently available data (z ≲ 2). Finally, we find that JWST observations can measure the evolution of galaxy major merger pair fractions at z ∼ 4–8 with ∼0.1–0.2 dex uncertainties. Such measurements would help determine the relative role of mergers to the build-up of stellar mass into the epoch of reionization. 
    more » « less
  4. The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158 μ m line and far infrared (FIR) continuum emission during the period of rapid mass assembly, right after the end of the HI reionization, at redshifts of 4 <   z  <  6. We present the survey science goals, the observational strategy, and the sample selection of the 118 galaxies observed with ALMA, with an average beam minor axis of about 0.85″, or ∼5 kpc at the median redshift of the survey. The properties of the sample are described, including spectroscopic redshifts derived from the UV-rest frame, stellar masses, and star-formation rates obtained from a spectral energy distribution (SED) fitting. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and FIR continuum, with the observed signal-to-noise distribution. The sample is representative of the SFG population in the main sequence at these redshifts. The overall detection rate in [CII] is 64% for a signal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S / N  >  5). Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including 40% that are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be classified. This diversity indicates that a wide array of physical processes must be at work at this epoch, first and foremost, those of galaxy mergers. This paper sets a reference sample for the gas distribution in normal SFGs at 4 <   z  <  6, a key epoch in galaxy assembly, which is ideally suited for studies with future facilities, such as the James Webb Space Telescope (JWST) and the Extremely Large Telescopes (ELTs). 
    more » « less
  5. ABSTRACT

    Several studies have detected Lyman-alpha (Ly α) from bright ($M_{\small UV}\lesssim -21.5$) galaxies during the early stages of reionization despite the significantly neutral intergalactic medium. To explain these detections, it has been suggested that z > 7 Ly α emitters (LAEs) inhabit physical Mpc (pMpc)-scale ionized regions powered by overdensities of faint galaxies; however, systematic searches for these overdensities near LAEs have been challenging. Here, we use Cosmic Evolution Early Release Science JWST/Near Infrared Camera imaging to search for large-scale galaxy overdensities near two very ultraviolet (UV)-bright, z = 8.7 LAEs in the Extended Groth Strip (EGS) field. We colour select 27 z = 8.4–9.1 candidates, including the one LAE in the footprint (EGSY8p7). From spectral energy distribution models, we infer moderately faint UV luminosities ($-21.2\lesssim {M_{\small UV}}\lesssim -19.1$) and stellar masses of M* ≈ 107.5–8.8 M⊙. All are efficient ionizing agents ($\xi _{\text{ion}}^{*}\approx 10^{25.5-26.0}$ Hz erg−1) and are generally morphologically simple with only one compact (re ≲ 140 to ∼650 pc) star-forming component. 13 candidates lie within 5 arcmin of EGSY8p7, leading to a factor-of-four galaxy overdensity at ≲5 arcmin (∼1.4 projected pMpc at z ∼ 8.7) separations from EGSY8p7. Separations of 10–15 arcmin (∼2.7–4.1 projected pMpc) are consistent with an average field. The spatial distribution of our sample may qualitatively suggest an R ≥ 2 pMpc ionized bubble encompassing both LAEs in EGS, which is theoretically unexpected but may be possible for a galaxy population four times more numerous than the average to create with moderate escape fractions (fesc ≳ 0.15) over long times (≳ 200 Myr). Upcoming spectroscopic follow-up will characterize the size of any ionized bubble that may exist and the properties of the galaxies powering such a bubble.

     
    more » « less