skip to main content


Title: Floorplan: spatial layout in memory management systems
In modern runtime systems, memory layout calculations are hand-coded in systems languages. Primitives in these languages are not powerful enough to describe a rich set of layouts, leading to reliance on ad-hoc macros, numerous interrelated static constants, and other boilerplate code. Memory management policies must also carefully orchestrate their application of address calculations in order to modify memory cooperatively, a task ill-suited to low-level systems languages at hand which lack proper safety mechanisms. In this paper we introduce Floorplan, a declarative language for specifying high level memory layouts. Constraints formerly implemented by describing how to compute locations are, in Floorplan, defined declaratively using explicit layout constructs. The challenge here was to discover constructs capable of sufficiently enabling the automatic generation of address calculations. Floorplan is implemented as a compiler for generating a Rust library. In a case study of an existing implementation of the immix garbage collection algorithm, Floorplan eliminates 55 out of the 63 unsafe lines of code: 100% of unsafe lines pertaining to memory safety.  more » « less
Award ID(s):
1717373
NSF-PAR ID:
10205115
Author(s) / Creator(s):
;
Date Published:
Journal Name:
GPCE 2019: Proceedings of the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences
Page Range / eLocation ID:
81 to 93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm—and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory- Safe WebAssembly (MSWasm) proposes to extend Wasm with language-level memory-safety abstractions to precisely address this problem. In this paper, we build on the original MSWasm position paper to realize this vision. We give a precise and formal semantics of MSWasm, and prove that well-typed MSWasm programs are, by construction, robustly memory safe. To this end, we develop a novel, language-independent memory-safety property based on colored memory locations and pointers. This property also lets us reason about the security guarantees of a formal C-to-MSWasm compiler—and prove that it always produces memory-safe programs (and preserves the semantics of safe programs). We use these formal results to then guide several implementations: Two compilers of MSWasm to native code, and a C-to-MSWasm compiler (that extends Clang). Our MSWasm compilers support different enforcement mechanisms, allowing developers to make security-performance trade-offs according to their needs. Our evaluation shows that on the PolyBenchC suite, the overhead of enforcing memory safety in software ranges from 22% (enforcing spatial safety alone) to 198% (enforcing full memory safety), and 51.7% when using hardware memory capabilities for spatial safety and pointer integrity. More importantly, MSWasm’s design makes it easy to swap between enforcement mechanisms; as fast (especially hardware-based) enforcement techniques become available, MSWasm will be able to take advantage of these advances almost for free. 
    more » « less
  2. null (Ed.)
    Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude. 
    more » « less
  3. Rust is a young systems programming language designed to provide both the safety guarantees of high-level languages and the execution performance of low-level languages. To achieve this design goal, Rust provides a suite of safety rules and checks against those rules at the compile time to eliminate many memory-safety and thread-safety issues. Due to its safety and performance, Rust’s popularity has increased significantly in recent years, and it has already been adopted to build many safety-critical software systems. It is critical to understand the learning and programming challenges imposed by Rust’s safety rules. For this purpose, we first conducted an empirical study through close, manual inspection of 100 Rust-related Stack Overflow questions. We sought to understand (1) what safety rules are challenging to learn and program with, (2) under which contexts a safety rule becomes more difficult to apply, and (3) whether the Rust compiler is sufficiently helpful in debugging safety-rule violations. We then performed an online survey with 101 Rust programmers to validate the findings of the empirical study. We invited participants to evaluate program variants that differ from each other, either in terms of violated safety rules or the code constructs involved in the violation, and compared the participants’ performance on the variants. Our mixed-methods investigation revealed a range of consistent findings that can benefit Rust learners, practitioners, and language designers. 
    more » « less
  4. This article introduces the first open-source FPGA-based infrastructure, MetaSys, with a prototype in a RISC-V system, to enable the rapid implementation and evaluation of a wide range of cross-layer techniques in real hardware. Hardware-software cooperative techniques are powerful approaches to improving the performance, quality of service, and security of general-purpose processors. They are, however, typically challenging to rapidly implement and evaluate in real hardware as they require full-stack changes to the hardware, system software, and instruction-set architecture (ISA). MetaSys implements a rich hardware-software interface and lightweight metadata support that can be used as a common basis to rapidly implement and evaluate new cross-layer techniques. We demonstrate MetaSys’s versatility and ease-of-use by implementing and evaluating three cross-layer techniques for: (i) prefetching in graph analytics; (ii) bounds checking in memory unsafe languages, and (iii) return address protection in stack frames; each technique requiring only ~100 lines of Chisel code over MetaSys. Using MetaSys, we perform the first detailed experimental study to quantify the performance overheads of using a single metadata management system to enable multiple cross-layer optimizations in CPUs. We identify the key sources of bottlenecks and system inefficiency of a general metadata management system. We design MetaSys to minimize these inefficiencies and provide increased versatility compared to previously proposed metadata systems. Using three use cases and a detailed characterization, we demonstrate that a common metadata management system can be used to efficiently support diverse cross-layer techniques in CPUs. MetaSys is completely and freely available at https://github.com/CMU-SAFARI/MetaSys . 
    more » « less
  5. Data-intensive analytical applications need to support both efficient reads and writes. However, what is usually a good data layout for an update-heavy workload, is not well-suited for a read-mostly one and vice versa. Modern analytical data systems rely on columnar layouts and employ delta stores to inject new data and updates. We show that for hybrid workloads we can achieve close to one order of magnitude better performance by tailoring the column layout design to the data and query workload. Our approach navigates the possible design space of the physical layout: it organizes each column’s data by determining the number of partitions, their corresponding sizes and ranges, and the amount of buffer space and how it is allocated. We frame these design decisions as an optimization problem that, given workload knowledge and performance requirements, provides an optimal physical layout for the workload at hand. To evaluate this work, we build an in-memory storage engine, Casper, and we show that it outperforms state-of-the-art data layouts of analytical systems for hybrid workloads. Casper delivers up to 2.32x higher throughput for update-intensive workloads and up to 2.14x higher throughput for hybrid workloads. We further show how to make data layout decisions robust to workload variation by carefully selecting the input of the optimization. 
    more » « less