skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bi-directional streaming of particles accelerated at the STEREO-A shock on 2008 March 9
ABSTRACT We present an interpretation of anisotropy and intensity of supra-thermal ions near a fast quasi-perpendicular reverse shock measured by Solar Terrestrial Relations Observatory Ahead (ST-A) on 2008 March 9. The measured intensity profiles of the supra-thermal particles exhibit an enhancement, or ‘spike’, at the time of the shock arrival and pitch-angle anisotropies before the shock arrival are bi-modal, jointly suggesting trapping of near-scatter-free ions along magnetic field lines that intersect the shock at two locations. We run test-particle simulations with pre-existing upstream magnetostatic fluctuations advected across the shock. The measured bi-modal upstream anisotropy, the nearly field-aligned anisotropies up to ∼15 min upstream of the shock, as well as the ‘pancake-like’ anisotropies up to ∼10 min downstream of the shock are well reproduced by the simulations. These results, in agreement with earlier works, suggest a dominant role of the large-scale structure (100s of supra-thermal proton gyroradii) of the magnetic field in forging the early-on particle acceleration at shocks.  more » « less
Award ID(s):
1735422
PAR ID:
10206672
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2087 to 2093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Collisionless shocks tend to send charged particles into the upstream, driving electric currents through the plasma. Using kinetic particle-in-cell simulations, we investigate how the background thermal plasma neutralizes such currents in the upstream of quasi-parallel non-relativistic electron–proton shocks. We observe distinct processes in different regions: the far upstream, the shock precursor, and the shock foot. In the far upstream, the current is carried by nonthermal protons, which drive electrostatic modes and produce suprathermal electrons that move toward upstream infinity. Closer to the shock (in the precursor), both the current density and the momentum flux of the beam increase, which leads to electromagnetic streaming instabilities that contribute to the thermalization of suprathermal electrons. At the shock foot, these electrons are exposed to shock-reflected protons, resulting in a two-stream type instability. We analyze these processes and the resulting heating through particle tracking and controlled simulations. In particular, we show that the instability at the shock foot can make the effective thermal speed of electrons comparable to the drift speed of the reflected protons. These findings are important for understanding both the magnetic field amplification and the processes that may lead to the injection of suprathermal electrons into diffusive shock acceleration. 
    more » « less
  2. Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population. 
    more » « less
  3. Abstract The anisotropy of energetic particles provides essential information to help resolve the underlying fundamental physics of their spatial distributions, injection, acceleration, and transport processes. In this work, we report an energetic ion enhancement that is characterized by very large and long-lasting anisotropies observed by STEREO A and Solar Orbiter, which are nearly aligned along the same nominal Parker spiral. This ion enhancement appears at the rising phase of a widespread solar energetic particle event that was associated with the farside coronal mass ejection on 2022 February 15. According to our analysis, the long-lasting anisotropy resulted from the continuous injection of energetic ions from a well-connected particle source located beyond the STEREO A’s orbit. Solar Orbiter also observed an interval of very large anisotropy dominated exclusively by sunward streaming ions but with the additional implication that it detected the very early phase of ion injections onto magnetic field lines that newly connected to the particle source, which is likely the first reported event of this kind. These results further illustrate how energetic particle anisotropy information, in particular from multiple observer locations, can be used to disentangle the sources and transport processes of energetic ions, even when their heliospheric context is not simple. 
    more » « less
  4. Collisionless shocks are frequently analysed using the magnetohydrodynamics (MHD) formalism, even though MHD assumes a small mean free path. Yet, isotropy of pressure, the fruit of binary collisions and assumed in MHD, may not apply in collisionless shocks. This is especially true within a magnetized plasma, where the field can stabilize an anisotropy. In a previous article (Bret & Narayan,J. Plasma Phys., vol. 88, no. 6, 2022b, p. 905880615), a model was presented capable of dealing with the anisotropies that may arise at the front crossing. It was solved for any orientation of the field with respect to the shock front. Yet, for some values of the upstream parameters, several downstream solutions were found. Here, we complete the work started in Bret & Narayan (J. Plasma Phys., vol. 88, no. 6, 2022b, p. 905880615) by showing how to pick the physical solution out of the ones offered by the algebra. This is achieved by 2 means: (i) selecting the solution that has the downstream field obliquity closest to the upstream one. This criterion is exemplified on the parallel case and backed up by particle-in-cell simulations. (ii) Filtering out solutions which do not satisfy a criteria already invoked to trim multiple solutions in MHD: the evolutionarity criterion, that we assume valid in the collisionless case. The end result is a model in which a given upstream configuration results in a unique, or no downstream configuration (as in MHD). The largest departure from MHD is found for the case of a parallel shock. 
    more » « less
  5. Abstract We present observations of ≳10–100 keV nucleon −1 suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track the magnetic field polarity reversal and show up to ∼10:1 anti-sunward, field-aligned flows and beams closer to the HCS that become nearly isotropic farther from the HCS; (4) the He spectrum steepens either side of the HCS, and the He, O, and Fe spectra exhibit power laws of the form ∼ E −4 – E 6 ; and (5) maximum energies E X increase with the ion’s charge-to-mass ( Q / M ) ratio as E X / E H ∝ ( Q X / M X ) δ , where δ ∼ 0.65–0.76, assuming that the average Q states are similar to those measured in gradual and impulsive solar energetic particle events at 1 au. The absence of velocity dispersion in combination with strong field-aligned anisotropies closer to the HCS appears to rule out solar flares and near-Sun coronal-mass-ejection-driven shocks. These new observations present challenges not only for mechanisms that employ direct parallel electric fields and organize maximum energies according to E / Q but also for local diffusive and magnetic-reconnection-driven acceleration models. Reevaluation of our current understanding of the production and transport of energetic ions is necessary to understand this near-solar, current-sheet-associated population of ST ions. 
    more » « less