skip to main content


Title: Laser absorption of carbon dioxide at the vibrational bandhead near 4.2μm in high-pressure rocket combustion environments
A novel laser absorption sensing strategy has been developed to evaluate combustion progress through quantitative measurements of carbon dioxide (CO2) in high-pressure (> 50 atm), high-temperature (> 3000 K) hydrocarbon-fueled rocket combustion flows. The sensor enables a broad range of operability by probing rovibrational transitions in the bandhead of CO2 near 4.2 m, accessed with an interband cascade laser. Under extreme rocket conditions, this targeted bandhead region experiences line-mixing effects that favorably distort the molecular spectra. A preliminary spectroscopic model of line-mixing effects has been developed utilizing a high-enthalpy shock tube to achieve scalability of spectral simulations over a range of high temperatures and high pressures. The model is employed for quantitative interpretation of measured absorption signals. The mid-infrared light source was fiber-coupled for remote light delivery at propulsion test facilities. A wavelength modulation spectroscopy technique utilizing normalized-second harmonic detection was implemented for acquiring differential absorption signals in a harsh rocket combustor environment. Using this method, measurements of CO2 concentration have been demonstrated over a range of operating conditions up to 83 bar in a single-element-injector RP-2/GOx rocket combustor at the Air Force Research Laboratory in Edwards, CA.  more » « less
Award ID(s):
1752516
NSF-PAR ID:
10206730
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
AIAA SciTech Forum 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teagle, Damon A (Ed.)
    The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels. 
    more » « less
  2. Abstract One of the major challenges in the development of micro-combustors is heat losses that result in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850 K to 970 K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m−1 K−1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines, and all various kinds of micro-combustors. 
    more » « less
  3. Abstract

    Terrestrial Very‐Low‐Frequency (VLF) energy from both lightning discharges and radio transmitters has a role in affecting the energetic electrons in the Van Allen radiation belts, but quantification of these effects is particularly difficult, largely due to the collisional damping experienced in the highly variable electron density in the D‐ and E‐region ionosphere. The Faraday International Reference Ionosphere (FIRI) model was specifically developed by combining lower‐ionosphere chemistry modeling with in situ rocket measurements, and represents to date the most reliable source of electron density profiles for the lower ionosphere. As a full‐resolution empirical model, FIRI is not well suited to D‐ and E‐region ionosphere inversion, and its applicability in transionospheric VLF simulation and in remote sensing of the lower ionosphere is limited. Motivated by how subionospheric VLF remote sensing has been aided by the Wait and Spies (WS) profile (Wait & Spies, 1964), in this study, we parameterize the FIRI profiles and extend the WS profile to the E‐region ionosphere by introducing two new parameters: the knee altitudehkand the sharpness parameter for the E‐region ionosphereβE. Using this modified WS profile, we calculate the expected signals at different receiver locations from the NAA, NPM, and NWC transmitters under the full range of possible ionospheric conditions. We also describe and validate a method about how these results can be readily used to translate VLF measurements into estimates of the lower ionosphere electron density. Moreover, we use this method to evaluate the sensitivity of different ground receiver locations in lower‐ionosphere remote sensing.

     
    more » « less
  4. Helium-4 in the superfluid phase (He II) is a two-fluid system that exhibits fascinating quantum hydrodynamics with important scientific and engineering applications. However, the lack of high-precision flow measurement tools in He II has impeded the progress in understanding and utilizing its hydrodynamics. In recent years, there have been extensive efforts in developing quantitative flow visualization techniques applicable to He II. In particular, a powerful molecular tagging velocimetry (MTV) technique, based on tracking thin lines of He2 excimer molecules created via femtosecond laser-field ionization in helium, has been developed in our laboratory. This technique allows unambiguous measurement of the normal fluid velocity field in the two-fluid system. Nevertheless, there are two limitations to this technique: (1) only the velocity component perpendicular to the tracer line can be measured; and (2) there is an inherent error in determining the perpendicular velocity. In this paper, we discuss how these issues can be resolved by advancing the MTV technique. We also discuss two novel schemes for tagging and producing He2 tracers. The first method allows the creation of a tagged He2 tracer line without the use of an expensive femtosecond laser. The second method enables full-space velocity field measurement through tracking small clouds of He2 molecules created via neutron-3He absorption reactions in He II. 
    more » « less
  5. Abstract We present a model for atmospheric absorption of solar ultraviolet (UV) radiation. The initial motivation for this work is to predict this effect and correct it in Sounding Rocket (SR) experiments. In particular, the Full-sun Ultraviolet Rocket Spectrograph (FURST) is anticipated to launch in mid-2023. FURST has the potential to observe UV absorption while imaging solar spectra between 120-181 nm, at a resolution of ℛ > 2 ⋅ 10 4 ( Δ V < ± 15 km / s ) , and at altitudes of between ≈ 110-255 km. This model uses estimates for density and temperature, as well as laboratory measurements of the absorption cross-section, to predict the UV absorption of solar radiation at high altitudes. Refraction correction is discussed and partially implemented but is negligible for the results presented. Absorption by molecular Oxygen is the primary driver within the UV spectral range of our interest. The model is built with a wide range of applications in mind. The primary result is a method for inversion of the absorption cross-section from images obtained during an instrument flight, even if atmospheric observations were not initially intended. The potential to obtain measurements of atmospheric properties is an exciting prospect, especially since sounding rockets are the only method currently available for probing this altitude in-situ . Simulation of noisy spectral images along the FURST flight profile is performed using data from the High-Resolution Telescope and Spectrograph (HRTS) SR and the FISM2 model for comparison. Analysis of these simulated signals allows us to capture the Signal-to-Noise Ratio (SNR) of FURST and the capability to measure atmospheric absorption properties as a function of altitude. Based on the prevalence of distinct spectral features, our calculations demonstrate that atmospheric absorption may be used to perform wavelength calibration from in-flight data. 
    more » « less