skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved co-scheduling of multi-layer printing path scanning for collaborative additive manufacturing
Additive manufacturing processes, especially those based on fused filament fabrication mechanism, have a low productivity. One solution to this problem is to adopt a collaborative additive manufacturing system that employs multiple printers/extruders working simultaneously to improve productivity by reducing the process makespan. However, very limited research is available to address the major challenges in the co-scheduling of printing path scanning for different extruders. Existing studies lack: (i) a consideration of the impact of sub-path partitions and simultaneous printing of multiple layers on the multi-extruder printing makespan; and (ii) efficient algorithms to deal with the multiple decision-making involved. This article develops an improved method by first breaking down printing paths on different printing layers into sub-paths and assigning these generated sub-paths to different extruders. A mathematical model is formulated for the co-scheduling problem, and a hybrid algorithm with sequential solution procedures integrating an evolutionary algorithm and a heuristic is customized to multiple decision-making in the co-scheduling for collaborative printing. The performance was compared with the most recent research, and the results demonstrated further makespan reduction when sub-path partition or the simultaneous printing of multiple layers is considered. This article discusses the impacts of process setups on makespan reduction, providing a quantitative tool for guiding process development.  more » « less
Award ID(s):
1646897 1901109
PAR ID:
10207963
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IISE Transactions
ISSN:
2472-5854
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing processes, especially those based on fused filament fabrication (FFF) mechanism, have relatively low productivity and suffer from production scalability issue. One solution is to adopt a collaborative additive manufacturing system that is equipped with multiple extruders working simultaneously to improve productivity. The collaborative additive manufacturing encounters a grand challenge in the scheduling of printing path scanning by different extruders. If not properly scheduled, the extruders may collide into each other or the structures built by earlier scheduled scanning tasks. However, there existed limited research addressing this problem, in particular, lacking the determination of the scanning direction and the scheduling for sub-path scanning. This paper deals with the challenges by developing an improved method to optimally break the existing printing paths into sub-paths and assign these generated sub-paths to different extruders to obtain the lowest possible makespan. A mathematical model is formulated to characterize the problem, and a hybrid algorithm based on an evolutionary algorithm and a heuristic approach is proposed to determine the optimal solutions. The case study has demonstrated the application of the algorithms and compared the results with the existing research. It has been found that the printing time can be reduced by as much as 41.3% based on the available hardware settings. 
    more » « less
  2. As the metal additive manufacturing (AM) field evolves with an increasing demand for highly complex and customizable products, there is a critical need to close the gap in productivity between metal AM and traditional manufacturing (TM) processes such as continuous casting, machining, etc., designed for mass production. This paper presents the development of the scalable and expeditious additive manufacturing (SEAM) process, which hybridizes binder jet printing and stereolithography principles, and capitalizes on their advantages to improve productivity. The proposed SEAM process was applied to stainless steel 420 (SS420) and the processing conditions (green part printing, debinding, and sintering) were optimized. Finally, an SS420 turbine fabricated using these conditions successfully reached a relative density of 99.7%. The SEAM process is not only suitable for a high-volume production environment but is also capable of fabricating components with excellent accuracy and resolution. Once fully developed, the process is well-suited to bridge the productivity gap between metal AM and TM processes, making it an attractive candidate for further development and future commercialization as a feasible solution to high-volume production AM. 
    more » « less
  3. Abstract Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers. 
    more » « less
  4. Cooperative 3D Printing (C3DP), an additive manufacturing platform consisting of a swarm of mobile printing robots, is an emerging technology designed to address the size and printing speed limitations of conventional, gantry-based 3D printers. A typical C3DP process often involves several interconnected stages, including project/job partitioning, job placement on the floor, task scheduling, path planning, and motion planning. In our previous work on project partitioning, we presented a Z-Chunker, which vertically divides a tall print project into multiple jobs to overcome the physical constraints of printers in the Z direction, and an XY Chunker, to partition jobs into discrete chunks, which are allocated to individual printing robots for parallel printing. These geometry partitioning algorithms determine what is to be printed, but other information, such as when, where, and in what order chunks should be printed, is required to carry out the print physically. This paper introduces the first Job Placement Optimizer for C3DP based on Dynamic Dependency List schedule assignment and Conflict-Based Search path planning. Our algorithm determines the optimal locations for all jobs and chunks (i.e., subtasks of a job) on the factory floor to minimize the makespan for C3DP. To validate the proposed approach, we conduct three case studies: a simple geometry with homogeneous jobs in the Z direction and two complex geometries (one with moderate complexity and one relatively more complex) with non-homogeneous jobs in the Z direction. We also performed simulations to understand the impact of other factors, such as the number of robots, the number of jobs, chunking orientation, and the heterogeneity of prints (e.g., when chunks are different in size and materials), on the effectiveness of this placement optimizer. 
    more » « less
  5. Abstract Swarm manufacturing (SM) is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D Printing (C3DP), a special form of swarm manufacturing, uses multiple printers to print large-scale parts cooperatively and aims to tackle key challenges in the additive manufacturing industry, such as trade-offs among size, speed, quality, and cost. A fundamental challenge in C3DP is how to achieve collision-free, time-efficient printing when multiple printers operate in a shared workspace. This is a complex problem since the solution may depend on a myriad of factors, such as the number of printers, part geometry, printer positioning, mobility, and kinematics, or whether the printing path pre-determined. In this paper, we present SafeZone, a collision-free and scalable C3DP framework that aims to minimize printing time by considering both the geometry and topology (space-connectivity) of the resulting workspace when segmenting the part layer. To achieve this, we use a guided Voronoi tessellation that can only produce degree-3 partitions, which we show to have optimal scheduling properties based on the chromatic number of the resulting partition graph. The sites of the Voronoi tessellation are constrained to only lie on the boundary of their convex hull, thus facilitating collision-free operation in C3DP systems with robotic arms. We demonstrate through physical testing in a 4-printer scenario with SCARA arms that SafeZone can produce collision-free prints, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, we show how the partition created by our methodology has a printing time reduction of 22.83% when compared to a naive choice which does not consider workspace topology. 
    more » « less