skip to main content


Title: Improved co-scheduling of multi-layer printing path scanning for collaborative additive manufacturing
Additive manufacturing processes, especially those based on fused filament fabrication mechanism, have a low productivity. One solution to this problem is to adopt a collaborative additive manufacturing system that employs multiple printers/extruders working simultaneously to improve productivity by reducing the process makespan. However, very limited research is available to address the major challenges in the co-scheduling of printing path scanning for different extruders. Existing studies lack: (i) a consideration of the impact of sub-path partitions and simultaneous printing of multiple layers on the multi-extruder printing makespan; and (ii) efficient algorithms to deal with the multiple decision-making involved. This article develops an improved method by first breaking down printing paths on different printing layers into sub-paths and assigning these generated sub-paths to different extruders. A mathematical model is formulated for the co-scheduling problem, and a hybrid algorithm with sequential solution procedures integrating an evolutionary algorithm and a heuristic is customized to multiple decision-making in the co-scheduling for collaborative printing. The performance was compared with the most recent research, and the results demonstrated further makespan reduction when sub-path partition or the simultaneous printing of multiple layers is considered. This article discusses the impacts of process setups on makespan reduction, providing a quantitative tool for guiding process development.  more » « less
Award ID(s):
1646897 1901109
NSF-PAR ID:
10207963
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IISE Transactions
ISSN:
2472-5854
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing processes, especially those based on fused filament fabrication (FFF) mechanism, have relatively low productivity and suffer from production scalability issue. One solution is to adopt a collaborative additive manufacturing system that is equipped with multiple extruders working simultaneously to improve productivity. The collaborative additive manufacturing encounters a grand challenge in the scheduling of printing path scanning by different extruders. If not properly scheduled, the extruders may collide into each other or the structures built by earlier scheduled scanning tasks. However, there existed limited research addressing this problem, in particular, lacking the determination of the scanning direction and the scheduling for sub-path scanning. This paper deals with the challenges by developing an improved method to optimally break the existing printing paths into sub-paths and assign these generated sub-paths to different extruders to obtain the lowest possible makespan. A mathematical model is formulated to characterize the problem, and a hybrid algorithm based on an evolutionary algorithm and a heuristic approach is proposed to determine the optimal solutions. The case study has demonstrated the application of the algorithms and compared the results with the existing research. It has been found that the printing time can be reduced by as much as 41.3% based on the available hardware settings. 
    more » « less
  2. Abstract In this paper, we present a decentralized approach based on a simple set of rules to schedule multi-robot cooperative additive manufacturing (AM). The results obtained using the decentralized approach are compared with those obtained from an optimization-based method, representing the class of centralized approaches for manufacturing scheduling. Two simulated case studies are conducted to evaluate the performance of both approaches in total makespan. In the first case, four rectangular bars of different dimensions from small to large are printed. Each bar is first divided into small subtasks (called chunks), and four robots are then assigned to cooperatively print the resulting chunks. The second case study focuses on testing geometric complexity, where four robots are used to print a mask stencil (an inverse stencil, not face covering). The result shows that the centralized approach provides a better solution (shorter makespan) compared to the decentralized approach for small-scale problems (i.e., a few robots and chunks). However, the gap between the solutions shrinks while the scale increases, and the decentralized approach outperforms the centralized approach for large-scale problems. Additionally, the runtime for the centralized approach increased by 39-fold for the extra-large problem (600 chunks and four robots) compared to the small-scale problem (20 chunks and four robots). In contrast, the runtime for the decentralized approach was not affected by the scale of the problem. Finally, a Monte-Carlo analysis was performed to evaluate the robustness of the centralized approach against uncertainties in AM. The result shows that the variations in the printing time of different robots can lead to a significant discrepancy between the generated plan and the actual implementation, thereby causing collisions between robots that should have not happened if there were no uncertainties. On the other hand, the decentralized approach is more robust because a collision-free schedule is generated in real-time. 
    more » « less
  3. Abstract There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification. 
    more » « less
  4. We consider the problem of orchestrating the execution of workflow applications structured as Directed Acyclic Graphs (DAGs) on parallel computing platforms that are subject to fail-stop failures. The objective is to minimize expected overall execution time, or makespan. A solution to this problem consists of a schedule of the workflow tasks on the available processors and of a decision of which application data to checkpoint to stable storage, so as to mitigate the impact of processor failures. For general DAGs this problem is hopelessly intractable. In fact, given a solution, computing its expected makespan is still a difficult problem. To address this challenge, we consider a restricted class of graphs, Minimal Series-Parallel Graphs (M-SPGS). It turns out that many real-world workflow applications are naturally structured as M-SPGS. For this class of graphs, we propose a recursive list-scheduling algorithm that exploits the M-SPG structure to assign sub-graphs to individual processors, and uses dynamic programming to decide which tasks in these sub-gaphs should be checkpointed. Furthermore, it is possible to efficiently compute the expected makespan for the solution produced by this algorithm, using a first-order approximation of task weights and existing evaluation algorithms for 2-state probabilistic DAGs. We assess the performance of our algorithm for production workflow configurations, comparing it to (i) an approach in which all application data is checkpointed, which corresponds to the standard way in which most production workflows are executed today; and (ii) an approach in which no application data is checkpointed. Our results demonstrate that our algorithm strikes a good compromise between these two approaches, leading to lower checkpointing overhead than the former and to better resilience to failure than the latter. 
    more » « less
  5. Ding, Yu (Ed.)
    Additive manufacturing systems are being deployed on a cloud platform to provide networked manufacturing services. This article explores the value of interconnected printing systems that share process data on the cloud in improving quality control. We employed an example of quality learning for cloud printers by understanding how printing conditions impact printing errors. Traditionally, extensive experiments are necessary to collect data and estimate the relationship between printing conditions vs. quality. This research establishes a multi-printer co-learning methodology to obtain the relationship between the printing conditions and quality using limited data from each printer. Based on multiple interconnected extrusion-based printing systems, the methodology is demonstrated by learning the printing line variations and resultant infill defects induced by extruder kinematics. The method leverages the common covariance structures among printers for the co-learning of kinematics-quality models. This article further proposes a sampling-refined hybrid metaheuristic to reduce the search space for solutions. The results showed significant improvements in quality prediction by leveraging data from data-limited printers, an advantage over traditional transfer learning that transfers knowledge from a data-rich source to a data-limited target. The research establishes algorithms to support quality control for reconfigurable additive manufacturing systems on the cloud. 
    more » « less