ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $$\rm Ly\alpha$$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $$\rm Ly\alpha$$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $$\rm Ly\alpha$$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $$\rm Ly\alpha$$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $$\rm Ly\alpha$$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $$\rm Ly\alpha$$ emission. The symmetry implies that the $$\rm Ly\alpha$$ scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $$\rm Ly\alpha$$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $$\rm Ly\alpha$$ emission. We speculate that this weak directional dependence of $$\rm Ly\alpha$$ emission becomes discernible only when the $$\rm Ly\alpha$$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $$\rm Ly\alpha$$ radiative transfer modelling.
more »
« less
The Keck Baryonic Structure Survey: using foreground/background galaxy pairs to trace the structure and kinematics of circumgalactic neutral hydrogen at z ∼ 2
ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $$\rm{H\,{\small I}}$$\rm Ly\,\alpha$$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $$\rm{H\,{\small I}}$$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $$\rm{H\,{\small I}}$$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$$^{-1}\,$$ dominate the kinematics of circumgalactic $$\rm{H\,{\small I}}$$ out to Dtran ≃ 50 kpc, while $$\rm{H\,{\small I}}$$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $$\rm{H\,{\small I}}$$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $$\rm Ly\,\alpha$$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion.
more »
« less
- PAR ID:
- 10208465
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 499
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1721 to 1746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M⋆∼ 109M⊙)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.more » « less
-
null (Ed.)ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$), we find a relatively modest average projected offset of $$|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$$ = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $$|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$$) showed offsets a factor of three greater than their fainter counterparts ($$\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations.more » « less
-
ABSTRACT We study the properties of magnetic fields in the circumgalactic medium (CGM) of z < 1 galaxies by correlating Faraday rotation measures (RMs) of ∼1000 high-redshift radio sources with the foreground galaxy number density estimated from the DESI Legacy Imaging Surveys. This method enables us to extract signals of RMs contributed by intervening gas around multiple galaxies. Our results show that there is no detectable correlation between the distribution of RMs and the number of foreground galaxies, contrary to several previous results. Utilizing the non-detection signals, we estimate 3σ upper limits to the RMs from the CGM of $$\sim \!20 \rm \ rad\, m^{-2}$$ within 50 kpc and $$\sim \!10 \rm \ rad \, m^{-2}$$ at separations of 100 kpc. By adopting a column density distribution of ionized gas obtained from absorption-line measurements, we further estimate the strengths of coherent magnetic fields parallel to the line of sight of $$\lt \rm 2 \ \mu G$$ in the CGM. We show that the estimated upper limits of RMs and magnetic field strengths are sufficient to constrain outputs of recent galaxy magnetohydrodynamic simulations. Finally, we discuss possible causes for the inconsistency between our results and previous works.more » « less
-
ABSTRACT We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z ≲ 1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman limit systems (LLSs) at zabs < 1. We report five new LLSs of $$\log \, N({\mathrm{ H} \,{\small I}})/{{\rm cm^{-2}}}\gtrsim 17.2$$ over a total redshift survey path-length of $$\Delta \, z_{\mathrm{ LL}}=9.3$$, and a number density of $$n(z)=0.43_{-0.18}^{+0.26}$$. Considering all absorbers with $$\log \, N({{\mathrm{ H} \,{\small I}}})/{{\rm cm^{-2}}}\gt 16.5$$ leads to $$n(z)=1.08_{-0.25}^{+0.31}$$ at zabs < 1. All LLSs exhibit a multicomponent structure and associated metal transitions from multiple ionization states such as C ii, C iii, Mg ii, Si ii, Si iii, and O vi absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than $$0.1\, L_*$$ at d ≲ 300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disc, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d = 15 to 72 pkpc and intrinsic luminosities from $${\approx} 0.01\, L_*$$ to $${\approx} 3\, L_*$$. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.more » « less
An official website of the United States government

