skip to main content


Title: Crystal Growth and Elemental Homogeneity of the Multicomponent Rare-Earth Garnet (Lu 1/6 Y 1/6 Ho 1/6 Dy 1/6 Tb 1/6 Gd 1/6 ) 3 Al 5 O 12
Award ID(s):
1846935
NSF-PAR ID:
10208600
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
20
Issue:
10
ISSN:
1528-7483
Page Range / eLocation ID:
6769 to 6776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn–Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long‐cycle reliability. Here we report a zero‐strain P2‐ Na2/3Li1/6Co1/6Mn2/3O2cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+/Mn4+redox, mitigating the Jahn–Teller distortion, and minimizing the lattice change. 94.5 % of Na+in the unit structure can be reversibly cycled with a charge cut‐off voltage of 4.5 V (vs. Na+/Na). Impressively, a solid‐solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g−1, a high energy density of 534 Wh kg−1, and excellent capacity retention of 95.8 % at 1 C after 250 cycles.

     
    more » « less
  2. Abstract

    Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn–Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long‐cycle reliability. Here we report a zero‐strain P2‐ Na2/3Li1/6Co1/6Mn2/3O2cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+/Mn4+redox, mitigating the Jahn–Teller distortion, and minimizing the lattice change. 94.5 % of Na+in the unit structure can be reversibly cycled with a charge cut‐off voltage of 4.5 V (vs. Na+/Na). Impressively, a solid‐solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g−1, a high energy density of 534 Wh kg−1, and excellent capacity retention of 95.8 % at 1 C after 250 cycles.

     
    more » « less