skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct sources of interannual subtropical and subpolar Atlantic overturning variability
The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface.  more » « less
Award ID(s):
1948335
PAR ID:
10484999
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature geoscience
Date Published:
Journal Name:
Nature geoscience
ISSN:
1752-0894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Here we investigate the role of the atmospheric circulation in the Atlantic Meridional Overturning Circulation (AMOC) by comparing a fully‐coupled large ensemble, a forced‐ocean simulation, and new experiments using a fully‐coupled global climate model where winds above the boundary layer are nudged toward reanalysis. When winds are nudged north of 45°N, agreement with RAPID array observations of AMOC at 26.5°N improves across several metrics. The phasing of interannual variability is well‐captured due to the response of the local Ekman component in both wind‐nudging and forced‐ocean simulations, however the variance remains underestimated. The mean AMOC strength is substantially reduced relative to the fully‐coupled model large ensemble, which is biased high, due to the impact of winds on surface buoyancy fluxes over the subpolar gyre. Nudging winds toward observations also reduces the 1979–2016 trend in AMOC, suggesting that improvement in the representation of the high‐latitude atmosphere is important for projecting long‐term AMOC changes. 
    more » « less
  2. Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms. 
    more » « less
  3. Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’. 
    more » « less
  4. We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection. 
    more » « less
  5. Abstract Understanding internal variability of the climate system is critical when isolating internal and anthropogenically forced signals. Here, we investigate the modes of Atlantic Meridional Overturning Circulation (AMOC) variability using perturbation experiments with the Institut Pierre‐Simon Laplace's (IPSL) coupled model and compare them to Coupled Model Intercomparison Project Phase 6 (CMIP6) pre‐industrial control simulations. We identify two characteristic modes of variability—decadal‐to‐multidecadal (DMDvar) and centennial (CENvar). The former is driven largely by temperature anomalies in the subpolar North Atlantic, while the latter is driven by salinity in the western subpolar North Atlantic. The amplitude of each mode scales linearly with the meanAMOCstrength in the IPSL experiments. TheDMDvaramplitude correlates well with theAMOCmean strength across CMIP6 models, while theCENvarmode does not. These findings suggest that the strength ofDMDvardepends robustly on the North Atlantic mean state, while theCENvarmode may be model‐dependent. 
    more » « less