skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-Time Model Updating Algorithm for Structures Experiencing High-Rate Dynamic Events
Abstract Real-time model updating of active structures subject to unmodeled high-rate dynamic events require structural model updates on the timescale of 2 ms or less. Examples of active structures subjected to unmodeled high-rate dynamic events include hypersonic vehicles, active blast mitigation, and orbital infrastructure. Due to the unmodeled nature of the events of interest, the real-time model updating algorithm should circumvent any model pre-calculations. In this work, we present a methodology that updates the finite element analysis (FEA) model of a structure experiencing varying dynamics through online measurements. The algorithm is demonstrated for a testbed, comprised of a cantilever beam and a roller that serves as movable support. The structure’s state is updated (i.e. the position of the moving roller) by continuously updating the associated FEA model through an online adaptive meshing and search algorithm. The structure’s state is continuously estimated by comparing the measured signals with FEA models. New FEA models are built based on the enhanced estimate of the structure’s state through adaptive meshing for modal analysis and adaptive search space for the FEA model selection. The proposed methodology is verified experimentally in real-time using the testbed. It is demonstrated that the adaptive features can achieve accurate state estimations within the required 2 ms timescale.  more » « less
Award ID(s):
1850012 1937535
PAR ID:
10211840
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    Real-time model updating for active structures experiencing high-rate dynamic events such as; hypersonic vehicles, active blast mitigation, and ballistic packages require that continuous changes in the structure’s state be updated on a timescale of 1 ms or less. This requires the development of real-time model updating techniques capable of tracking the structure’s state. The Local Eigenvalue Modification Procedure (LEMP) is a structural dynamic modification procedure that converts the computationally intensive global eigenvalue problem used in modal analysis into a set of second-order equations that are more readily handled. Implementation of LEMP for tracking a structure’s state results in secular equations that must be solved to obtain the modified eigenvalues of the structure’s state. In this work, the roots of the secular equations are solved iteratively using a divide and conquer approach, leading to faster root convergence. The present study reports on developing a real-time computing module to perform LEMP in the context of real-time model updating with a stringent timing constraint of 1 ms or less. In this preliminary work, LEMP is applied to tracking the condition of a numerical cantilever beam structure, which depicts changes in a structure’s state as a change in the roller position. A discussion of variations in timing results and accuracy are discussed. 
    more » « less
  2. We propose a framework for adaptive data collection aimed at robust learning in multi-distribution scenarios under a fixed data collection budget. In each round, the algorithm selects a distribution source to sample from for data collection and updates the model parameters accordingly. The objective is to find the model parameters that minimize the expected loss across all the data sources. Our approach integrates upper-confidence-bound (UCB) sampling with online gradient descent (OGD) to dynamically collect and annotate data from multiple sources. By bridging online optimization and multi-armed bandits, we provide theoretical guarantees for our UCB-OGD approach, demonstrating that it achieves a minimax regret of O(T 1 2 (K ln T) 1 2 ) over K data sources after T rounds. We further provide a lower bound showing that the result is optimal up to a ln T factor. Extensive evaluations on standard datasets and a real-world testbed for object detection in smartcity intersections validate the consistent performance improvements of our method compared to baselines such as random sampling and various active learning methods. 
    more » « less
  3. null (Ed.)
    This work presents novel techniques for tightly integrated online information fusion and planning in human-autonomy teams operating in partially known environments. Motivated by dynamic target search problems, we present a new map-based sketch interface for online soft-hard data fusion. This interface lets human collaborators efficiently update map information and continuously build their own highly flexible ad hoc dictionaries for making language-based semantic observations, which can be actively exploited by autonomous agents in optimal search and information gathering problems. We formally link these capabilities to POMDP algorithms for optimal planning under uncertainty, and develop a new Dynamically Observable Monte Carlo planning (DOMCP) algorithm as an efficient means for updating online sampling-based planning policies for POMDPs with non-static observation models. DOMCP is validated on a small scale robot localization problem, and then demonstrated with our new user interface on a simulated dynamic target search scenario in a partially known outdoor environment. 
    more » « less
  4. null (Ed.)
    Systems experiencing high-rate dynamic events, termed high-rate systems, typically undergo accelerations of amplitudes higher than 100 g-force in less than 10 ms. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast mitigation systems. Given their critical functions, accurate and fast modeling tools are necessary for ensuring the target performance. However, the unique characteristics of these systems, which consist of (1) large uncertainties in the external loads, (2) high levels of non-stationarities and heavy disturbances, and (3) unmodeled dynamics generated from changes in system configurations, in combination with the fast-changing environments, limit the applicability of physical modeling tools. In this paper, a deep learning algorithm is used to model high-rate systems and predict their response measurements. It consists of an ensemble of short-sequence long short-term memory (LSTM) cells which are concurrently trained. To empower multi-step ahead predictions, a multi-rate sampler is designed to individually select the input space of each LSTM cell based on local dynamics extracted using the embedding theorem. The proposed algorithm is validated on experimental data obtained from a high-rate system. Results showed that the use of the multi-rate sampler yields better feature extraction from non-stationary time series compared with a more heuristic method, resulting in significant improvement in step ahead prediction accuracy and horizon. The lean and efficient architecture of the algorithm results in an average computing time of 25 μμs, which is below the maximum prediction horizon, therefore demonstrating the algorithm’s promise in real-time high-rate applications. 
    more » « less
  5. We give an algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering (HAC), which computes a $$c$$-approximate clustering in roughly $$n^{1+O(1/c^2)}$$ time. We obtain our result by combining a new Centroid-Linkage HAC algorithm with a novel fully dynamic data structure for nearest neighbor search which works under adaptive updates. We also evaluate our algorithm empirically. By leveraging a state-of-the-art nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage HAC algorithm. Compared to an existing state-of-the-art exact baseline, our implementation maintains the clustering quality while delivering up to a $$36\times$$ speedup due to performing fewer distance comparisons. 
    more » « less