skip to main content


Title: The stationary points of the hierarchical three-body problem
ABSTRACT We study the stationary points of the hierarchical three body problem in the planetary limit (m1, m2 ≪ m0) at both the quadrupole and octupole orders. We demonstrate that the extension to octupole order preserves the principal stationary points of the quadrupole solution in the limit of small outer eccentricity e2 but that new families of stable fixed points occur in both prograde and retrograde cases. The most important new equilibria are those that branch off from the quadrupolar solutions and extend to large e2. The apsidal alignment of these families is a function of mass and inner planet eccentricity, and is determined by the relative directions of precession of ω1 and ω2 at the quadrupole level. These new equilibria are also the most resilient to the destabilizing effects of relativistic precession. We find additional equilibria that enable libration of the inner planet argument of pericentre in the limit of radial orbits and recover the non-linear analogue of the Laplace–Lagrange solutions in the coplanar limit. Finally, we show that the chaotic diffusion and orbital flips identified with the eccentric Kozai–Lidov mechanism and its variants can be understood in terms of the stationary points discussed here.  more » « less
Award ID(s):
1739160
NSF-PAR ID:
10211967
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1682 to 1700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We analyze the behavior of the argument of pericenter ω 2 of an outer particle in the elliptical restricted three-body problem, focusing on the ω 2 resonance or inverse Lidov-Kozai resonance. Methods. First, we calculated the contribution of the terms of quadrupole, octupole, and hexadecapolar order of the secular approximation of the potential to the outer particle’s ω 2 precession rate (d ω 2 ∕d τ ). Then, we derived analytical criteria that determine the vanishing of the ω 2 quadrupole precession rate (d ω 2 /d τ ) quad for different values of the inner perturber’s eccentricity e 1 . Finally, we used such analytical considerations and described the behavior of ω 2 of outer particles extracted from N-body simulations developed in a previous work. Results. Our analytical study indicates that the values of the inclination i 2 and the ascending node longitude Ω 2 associated with the outer particle that vanish (d ω 2 /d τ ) quad strongly depend on the eccentricity e 1 of the inner perturber. In fact, if e 1 < 0.25 (>0.40825), (d ω 2 /d τ ) quad is only vanished for particles whose Ω 2 circulates (librates). For e 1 between 0.25 and 0.40825, (d ω 2 /d τ ) quad can be vanished for any particle for a suitable selection of pairs (Ω 2 , i 2 ). Our analysis of the N-body simulations shows that the inverse Lidov-Kozai resonance is possible for small, moderate, and high values of e 1 . Moreover, such a resonance produces distinctive features in the evolution of a particle in the (Ω 2 , i 2 ) plane. In fact, if ω 2 librates and Ω 2 circulates, the extremes of i 2 at Ω 2 = 90° and 270° do not reach the same value, while if ω 2 and Ω 2 librate, the evolutionary trajectory of the particle in the (Ω 2 , i 2 ) plane shows evidence of an asymmetry with respect to i 2 = 90°. The evolution of ω 2 associated with the outer particles of the N-body simulations can be very well explained by the analytical criteria derived in our investigation. 
    more » « less
  2. Abstract

    Mutually misaligned circumbinary planets may form in a warped or broken gas disk or from later planet–planet interactions. With numerical simulations and analytic estimates we explore the dynamics of two circumbinary planets with a large mutual inclination. A coplanar inner planet causes prograde apsidal precession of the binary and the stationary inclination for the outer planet is higher for larger outer planet orbital radius. In this case a coplanar outer planet always remains coplanar. On the other hand, a polar inner planet causes retrograde apsidal precession of the binary orbit and the stationary inclination is smaller for larger outer planet orbital radius. For a range of outer planet semimajor axes, an initially coplanar orbit is librating meaning that the outer planet undergoes large tilt oscillations. Circumbinary planets that are highly inclined to the binary are difficult to detect—it is unlikely for a planet to have an inclination below the transit detection limit in the presence of a polar inner planet. These results suggest that there could be a population of circumbinary planets that are undergoing large tilt oscillations.

     
    more » « less
  3. Abstract

    We present a new mechanism of generating large planetary eccentricities. This mechanism applies to planets within the inner cavities of their companion protoplanetary disks. A massive disk with an inner truncation may become eccentric due to nonadiabatic effects associated with gas cooling and can retain its eccentricity in long-lived coherently precessing eccentric modes; as the disk disperses, the inner planet will encounter a secular resonance with the eccentric disk when the planet and the disk have the same apsidal precession rates; the eccentricity of the planet is then excited to a large value as the system goes through the resonance. In this work, we solve the eccentric modes of a model disk for a wide range of masses. We then adopt an approximate secular dynamics model to calculate the long-term evolution of the “planet + dispersing disk” system. The planet attains a large eccentricity (between 0.1 and 0.6) in our calculations even though the disk eccentricity is quite small (≲0.05). This eccentricity excitation can be understood in terms of the mode conversion (“avoided crossing” between two eigenstates) phenomenon associated with the evolution of the “planet + disk” eccentricity eigenstates.

     
    more » « less
  4. Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N -body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit. 
    more » « less
  5. ABSTRACT

    We study the formation of the TRAPPIST-1 (T1) planets starting shortly after Moon-sized bodies form just exterior to the ice line. Our model includes mass growth from pebble accretion and mergers, fragmentation, type-I migration, and eccentricity and inclination dampening from gas drag. We follow the composition evolution of the planets fed by a dust condensation code that tracks how various dust species condense out of the disc as it cools. We use the final planet compositions to calculate the resulting radii of the planets using a new planet interior structure code and explore various interior structure models. Our model reproduces the broader architecture of the T1 system and constrains the initial water mass fraction of the early embryos and the final relative abundances of the major refractory elements. We find that the inner two planets likely experienced giant impacts and fragments from collisions between planetary embryos often seed the small planets that subsequently grow through pebble accretion. Using our composition constraints, we find solutions for a two-layer model, a planet comprised of only a core and mantle, that match observed bulk densities for the two inner planets b and c. This, along with the high number of giant impacts the inner planets experienced, is consistent with recent observations that these planets are likely desiccated. However, two-layer models seem unlikely for most of the remaining outer planets, which suggests that these planets have a primordial hydrosphere. Our composition constraints also indicate that no planets are consistent with a core-free interior structure.

     
    more » « less