skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theory of ion holes in space and astrophysical plasmas
ABSTRACT Coherent bipolar electric field structures, ubiquitously found in various space and astrophysical plasma environments, play an important role in plasma transport and particle acceleration. Most of the studies found in the literature about them pertain to bipolar structures with positive potentials interpreted in terms of electron holes. Magnetospheric Multiscale spacecraft have recently observed a series of coherent electric field structures with negative potential in the Earth’s bow shock region, which are interpreted as ion holes. The existing theoretical models of ion holes are inadequate because they entail stringent conditions on the ratio of ion to electron temperature. This letter presents a new theory that provides a satisfactory explanation to these observations. A salient point is that this letter incorporates the electron dynamics in the theoretical formalism, which removes ambiguities associated with existing theories, thus showing that the new theory for ion holes may be widely applicable for space and astrophysical plasmas.  more » « less
Award ID(s):
1842643
PAR ID:
10212480
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
497
Issue:
1
ISSN:
1745-3925
Page Range / eLocation ID:
L69 to L75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The modeling of gamma-ray burst afterglow emission bears witness to strong electron heating in the precursor of Weibel-mediated, relativistic collisionless shock waves propagating in unmagnetized electron–ion plasmas. In this Letter, we propose a theoretical model, which describes electron heating via a Joule-like process caused by pitch-angle scattering in the decelerating, self-induced microturbulence and the coherent charge-separation field induced by the difference in inertia between electrons and ions. The emergence of this electric field across the precursor of electron–ion shocks is confirmed by large-scale particle-in-cell (PIC) simulations. Integrating the model using a Monte Carlo-Poisson method, we compare the main observables to the PIC simulations to conclude that the above mechanism can indeed account for the bulk of electron heating. 
    more » « less
  2. Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes splits into two separate domains as the ion temperature exceeds that of the electrons. Additionally, the present study reveals that the ion holes formed in a plasma with ion temperature higher than that of the electrons have a hump at its center. 
    more » « less
  3. Abstract Nonlinear ion-acoustic waves, ion holes, and electron holes have been observed on the Parker Solar Probe at a heliocentric distance of 35 solar radii. These time domain structures contain millisecond duration electric field spikes of several mV m−1. They are observed inside or at boundaries of switchbacks in the background magnetic field. Their presence in switchbacks indicates that both electron- and ion-streaming electrostatic instabilities occur there to thermalize electron and ion beams. 
    more » « less
  4. Lower hybrid drift instability (LHDI) is driven by the cross-field current and operates in the vicinity of the lower-hybrid frequency, between the ion- and electron-gyro frequencies, and with wavelengths between the electron and ion thermal gyro radii. The free energy source that drives this instability resides in the density gradient associated with an inhomogeneous plasma. The existing literature on LHDI assumes that the charged particle distribution function is given by a Maxwellian form, but the space plasma is pervasively observed to feature nonthermal characteristics. This paper extends the theory of LHDI to nonthermal plasmas. The generalized theory of LHDI is, thus, applicable to various space plasma environments characterized by nonthermal plasma velocity distribution functions. 
    more » « less
  5. Abstract Mini-magnetospheres are small ion-scale structures that are well suited to studying kinetic-scale physics of collisionless space plasmas. Such ion-scale magnetospheres can be found on local regions of the Moon, associated with the lunar crustal magnetic field. In this paper, we report on the laboratory experimental study of magnetic reconnection in laser-driven, lunar-like ion-scale magnetospheres on the Large Plasma Device at the University of California, Los Angeles. In the experiment, a high-repetition rate (1 Hz), nanosecond laser is used to drive a fast-moving, collisionless plasma that expands into the field generated by a pulsed magnetic dipole embedded into a background plasma and magnetic field. The high-repetition rate enables the acquisition of time-resolved volumetric data of the magnetic and electric fields to characterize magnetic reconnection and calculate the reconnection rate. We notably observe the formation of Hall fields associated with reconnection. Particle-in-cell simulations reproducing the experimental results were performed to study the microphysics of the interaction. By analyzing the generalized Ohm’s law terms, we find that the electron-only reconnection is driven by kinetic effects through the electron pressure anisotropy. These results are compared to recent satellite measurements that found evidence of magnetic reconnection near the lunar surface. 
    more » « less