skip to main content


Title: Combined electron firehose and electromagnetic ion cyclotron instabilities: quasilinear approach
ABSTRACT Various plasma waves and instabilities are abundantly present in the solar wind plasma, as evidenced by spacecraft observations. Among these, propagating modes and instabilities driven by temperature anisotropies are known to play a significant role in the solar wind dynamics. In situ measurements reveal that the threshold conditions for these instabilities adequately explain the solar wind conditions at large heliocentric distances. This paper pays attention to the combined effects of electron firehose instability driven by excessive parallel electron temperature anisotropy (T⊥e < T∥e) at high beta conditions, and electromagnetic ion cyclotron instability driven by excessive perpendicular proton temperature anisotropy (T⊥i > T∥i). By employing quasilinear kinetic theory based upon the assumption of bi-Maxwellian velocity distribution functions for protons and electrons, the dynamical evolution of the combined instabilities and their mutual interactions mediated by the particles is explored in depth. It is found that while in some cases, the two unstable modes are excited and saturated at distinct spatial and temporal scales, in other cases, the two unstable modes are intermingled such that a straightforward interpretation is not so easy. This shows that when the dynamics of protons and electrons are mutually coupled and when multiple unstable modes are excited in the system, the dynamical consequences can be quite complex.  more » « less
Award ID(s):
1842643
NSF-PAR ID:
10212481
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
659 to 667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The proton–alpha drift instability is a possible mechanism of the alpha-particle deceleration and the resulting proton heating in the solar wind. We present hybrid numerical simulations of this instability with particle-in-cell ions and a quasi-neutralizing electron fluid for typical conditions at 1 au. For the parameters used in this paper, we find that fast magnetosonic unstable modes propagate only in the direction opposite to the alpha-particle drift and do not produce the perpendicular proton heating necessary to accelerate the solar wind. Alfvén modes propagate in both directions and heat the protons perpendicularly to the mean magnetic field. Despite being driven by the alpha temperature anisotropy, the Alfvén instability also extracts the energy from the bulk motion of the alpha particles. In the solar wind, the instabilities operate in a turbulent ambient medium. We show that the turbulence suppresses the Alfvén instability but the perpendicular proton heating persists. Unlike a static nonuniform background, the turbulence does not invert the sense of the proton heating associated with the fast magnetosonic instability and it remains preferentially parallel.

     
    more » « less
  2. null (Ed.)
    Context. Magnetic reconnection plays a fundamental role in plasma dynamics under many different conditions, from space and astrophysical environments to laboratory devices. High-resolution in situ measurements from space missions allow naturally occurring reconnection processes to be studied in great detail. Alongside direct measurements, numerical simulations play a key role in the investigation of the fundamental physics underlying magnetic reconnection, also providing a testing ground for current models and theory. The choice of an adequate plasma model to be employed in numerical simulations, while also compromising with computational cost, is crucial for efficiently addressing the problem under study. Aims. We consider a new plasma model that includes a refined electron response within the “hybrid-kinetic framework” (fully kinetic protons and fluid electrons). The extent to which this new model can reproduce a full-kinetic description of 2D reconnection, with particular focus on its robustness during the nonlinear stage, is evaluated. Methods. We perform 2D simulations of magnetic reconnection with moderate guide field by means of three different plasma models: (i) a hybrid-Vlasov-Maxwell model with isotropic, isothermal electrons, (ii) a hybrid-Vlasov-Landau-fluid (HVLF) model where an anisotropic electron fluid is equipped with a Landau-fluid closure, and (iii) a full-kinetic model. Results. When compared to the full-kinetic case, the HVLF model effectively reproduces the main features of magnetic reconnection, as well as several aspects of the associated electron microphysics and its feedback onto proton dynamics. This includes the global evolution of magnetic reconnection and the local physics occurring within the so-called electron-diffusion region, as well as the evolution of species’ pressure anisotropy. In particular, anisotropy-driven instabilities (such as fire-hose, mirror, and cyclotron instabilities) play a relevant role in regulating electrons’ anisotropy during the nonlinear stage of magnetic reconnection. As expected, the HVLF model captures all these features, except for the electron-cyclotron instability. 
    more » « less
  3. ABSTRACT

    The solar wind plasma is characterized by unequal effective kinetic temperatures defined in perpendicular and parallel directions with respect to the ambient magnetic field. For electrons, the excessive perpendicular temperature anisotropy leads to quasi-parallel electromagnetic electron cyclotron (or whistler) instability and aperiodic electron-mirror instability with oblique wave vectors. The present paper carries out a direct side-by-side comparison of quasi-linear (QL) theory and particle-in-cell (PIC) simulation of combined mirror and cyclotron instabilities acting upon the initially anisotropic electron temperatures, and find that the QL theory satisfactorily encapsulates the non-linear aspect of the combined instability effects. However, a discrepancy between the present study and a previous PIC simulation result is also found, which points to the need for further investigation to resolve such an issue.

     
    more » « less
  4. Abstract The hot and diffuse nature of the Sun’s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave–particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are driven near the Sun, and calculate what instabilities are predicted for different models of the underlying particle populations. We model two hours-long intervals of PSP/SPAN-i measurements of the proton phase-space density during the PSP’s fourth perihelion with the Sun using two commonly used descriptions for the underlying velocity distribution. The linear stability and growth rates associated with the two models are calculated and compared. We find that both selected intervals are susceptible to resonant instabilities, though the growth rates and kinds of modes driven unstable vary depending on whether the protons are modeled using one or two components. In some cases, the predicted growth rates are large enough to compete with other dynamic processes, such as the nonlinear turbulent transfer of energy, in contrast with relatively slower instabilities at larger radial distances from the Sun. 
    more » « less
  5. Abstract

    Some of the most common processes in the solar wind, such as turbulence and wave generation by instabilities, are associated with spectral magnetic helicity. Therefore, the helicity is a convenient tool to investigate these processes. We use three-dimensional nonlinear kinetic simulations with particle ions and fluid electrons to analyze the magnetic helicity produced by proton temperature anisotropy instabilities coexisting with an ambient turbulence. The symmetry of the unstable system is violated by alpha-particle streaming with respect to protons along the mean magnetic field. At the same time, the turbulent fluctuations are also imbalanced by a nonzero cross-helicity. We show that in the nonlinear phase of the instability the resulting helicity structure is different from the prediction of the linear theory. In particular, it contains sign reversals and multiple domains of nonzero helicity. The turbulence generates its own magnetic helicity signature, which extends over a wide range of angles around the direction perpendicular to the mean magnetic field, and can have a sign the same as or opposite to that of the instability. These findings are consistent with the observed helicity spectra in the solar wind.

     
    more » « less