The likelihood of encountering in-training failures rises substantially with larger Deep Learning (DL) training workloads, leading to lost work and resource wastage. Such failures are typically offset by checkpointing, which comes at the cost of storage and network bandwidth overhead. State-of-the-art approaches involve lossy model compression mechanisms, which induce a tradeoff between the resulting model quality and compression ratio. We make a key enabling observation that the sensitivity of model weights to compression varies during training, and different weights benefit from different quantization levels, ranging from retaining full precision to pruning. We propose (1) a non-uniform quantization scheme that leverages this variation, (2) an efficient search mechanism that dynamically finds the best quantization configurations, and (3) a quantization-aware delta compression mechanism that rearranges weights to minimize checkpoint differences and thereby improving compression. We instantiate these contributions in Inshrinkerator, an in-training checkpoint compression system for DL workloads. Our experiments show that Inshrinkerator consistently achieves a better tradeoff between accuracy and compression ratio compared to prior works, enabling a compression ratio up to 39x and withstanding up to 10 restores with negligible accuracy impact in fault-tolerant training. Inshrinkerator achieves at least an order of magnitude reduction in checkpoint size for failure recovery and transfer learning without any loss of accuracy.
more »
« less
On Efficient Constructions of Checkpoints
Efficient construction of checkpoints/snapshots is a critical tool for training and diagnosing deep learning models. In this paper, we propose a lossy compression scheme for checkpoint constructions (called LC-Checkpoint). LC-Checkpoint simultaneously maximizes the compression rate and optimizes the recovery speed, under the assumption that SGD is used to train the model. LC-Checkpointuses quantization and priority promotion to store the most crucial information for SGD to recover, and then uses a Huffman coding to leverage the non-uniform distribution of the gradient scales. Our extensive experiments show that LC-Checkpoint achieves a compression rate up to 28× and recovery speedup up to 5.77× over a state-of-the-art algorithm (SCAR).
more »
« less
- Award ID(s):
- 1835821
- PAR ID:
- 10212765
- Date Published:
- Journal Name:
- Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Future exascale systems are expected to be characterized by more frequent failures than current petascale systems. This places increased importance on the application to minimize the amount of time wasted due to recompution when recovering from a checkpoint. Typically HPC application checkpoint at iteration boundaries. However, for applications that have a high per-iteration cost, checkpointing inside the iteration limits the amount of re-computation. This paper analyzes the performance and accuracy of using lossy compressed check-pointing in the computational chemistry application NWChem. Our results indicate that lossy compression is an effective tool for reducing the sub-iteration checkpoint size. Moreover, compression error tolerances that yield acceptable deviation in accuracy and iteration count are quantified.more » « less
-
As the amount of data produced by HPC applications reaches the exabyte range, compression techniques are often adopted to reduce the checkpoint time and volume. Since lossless techniques are limited in their ability to achieve appreciable data reduction, lossy compression becomes a preferable option. In this work, a lossy compression technique with highly efficient encoding, purpose-built error control, and high compression ratios is proposed. Specifically, we apply a discrete cosine transform with a novel block decomposition strategy directly to double-precision floating point datasets instead of prevailing prediction-based techniques. Further, we design an adaptive quantization with two specific task-oriented quantizers: guaranteed error bounds and higher compression ratios. Using real-world HPC datasets, our approach achieves 3x-38x compression ratios while guaranteeing specified error bounds, showing comparable performance with state-of-the-art lossy compression methods, SZ and ZFP. Moreover, our method provides viable reconstructed data for various checkpoint/restart scenarios in the FLASH application, thus is considered to be a promising approach for lossy data compression in HPC I/O software stacks.more » « less
-
In this paper, we propose and analyze SPARQSGD, an event-triggered and compressed algorithm for decentralized training of large-scale machine learning models over a graph. Each node can locally compute a condition (event) which triggers a communication where quantized and sparsified local model parameters are sent. In SPARQ-SGD, each node first takes a fixed number of local gradient steps and then checks if the model parameters have significantly changed compared to its last update; it communicates further compressed model parameters only when there is a significant change, as specified by a (design) criterion. We prove that SPARQ-SGD converges as O(1/nT ) and O(1/√nT ) in the strongly-convex and non-convex settings, respectively, demonstrating that aggressive compression, including event-triggered communication, model sparsification and quantization does not affect the overall convergence rate compared to uncompressed decentralized training; thereby theoretically yielding communication efficiency for `free'. We evaluate SPARQ-SGD over real datasets to demonstrate significant savings in communication bits over the state-of-the-art.more » « less
-
Writing large amounts of data concurrently to stable storage is a typical I/O pattern of many HPC workflows. This pattern introduces high I/O overheads and results in increased storage space utilization especially for workflows that need to capture the evolution of data structures with high frequency as checkpoints. In this context, many applications, such as graph pattern matching, perform sparse updates to large data structures between checkpoints. For these applications, incremental checkpointing techniques that save only the differences from one checkpoint to another can dramatically reduce the checkpoint sizes, I/O bottlenecks, and storage space utilization. However, such techniques are not without challenges: it is non-trivial to transparently determine what data has changed since a previous checkpoint and assemble the differences in a compact fashion that does not result in excessive metadata. State-of-art data reduction techniques (e.g., compression and de-duplication) have significant limitations when applied to modern HPC applications that leverage GPUs: slow at detecting the differences, generate a large amount of metadata to keep track of the differences, and ignore crucial spatiotemporal checkpoint data redundancy. This paper addresses these challenges by proposing a Merkle tree-based incremental checkpointing method to exploit GPUs’ high memory bandwidth and massive parallelism. Experimental results at scale show a significant reduction of the I/O overhead and space utilization of checkpointing compared with state-of-the-art incremental checkpointing and compression techniques.more » « less
An official website of the United States government

