skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics
Abstract In northern Alaska nearly 65% of the terrestrial surface is composed of polygonal ground, where geomorphic tundra landforms disproportionately influence carbon and nutrient cycling over fine spatial scales. Process-based biogeochemical models used for local to Pan-Arctic projections of ecological responses to climate change typically operate at coarse-scales (1km 2 –0.5°) at which fine-scale (<1km 2 ) tundra heterogeneity is often aggregated to the dominant land cover unit. Here, we evaluate the importance of tundra heterogeneity for representing soil carbon dynamics at fine to coarse spatial scales. We leveraged the legacy of data collected near Utqiaġvik, Alaska between 1973 and 2016 for model initiation, parameterization, and validation. Simulation uncertainty increased with a reduced representation of tundra heterogeneity and coarsening of spatial scale. Hierarchical cluster analysis of an ensemble of 21 st -century simulations reveals that a minimum of two tundra landforms (dry and wet) and a maximum of 4km 2 spatial scale is necessary for minimizing uncertainties (<10%) in regional to Pan-Arctic modeling applications.  more » « less
Award ID(s):
1636476
PAR ID:
10212893
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Riverine fluxes of carbon and inorganic nutrients are increasing in virtually all large permafrost-affected rivers, indicating major shifts in Arctic landscapes. However, it is currently difficult to identify what is causing these changes in nutrient processing and flux because most long-term records of Arctic river chemistry are from small, headwater catchments draining <200 km2or from large rivers draining >100,000 km2. The interactions of nutrient sources and sinks across these scales are what ultimately control solute flux to the Arctic Ocean. In this context, we performed spatially-distributed sampling of 120 subcatchments nested within three Arctic watersheds spanning alpine, tundra, and glacial-lake landscapes in Alaska. We found that the dominant spatial scales controlling organic carbon and major nutrient concentrations was 3–30 km2, indicating a continuum of diffuse and discrete sourcing and processing dynamics. These patterns were consistent seasonally, suggesting that relatively fine-scale landscape patches drive solute generation in this region of the Arctic. These network-scale empirical frameworks could guide and benchmark future Earth system models seeking to represent lateral and longitudinal solute transport in rapidly changing Arctic landscapes. 
    more » « less
  2. Climate change pressure on the Arctic permafrost is rising alarmingly, creating a decisive need to produce Pan-Arctic scale permafrost landform and thaw disturbance information from remote sensing (RS) data. Very high spatial resolution (VHSR) satellite images can be utilized to detect ice-wedge polygons (IWPs) – the most important and widespread landform in the Arctic tundra region - across the Arctic without compromising spatial details. Automated analysis of peta-byte scale VHSR imagery covering millions of square kilometers is a computationally challenging task. Traditional semantic segmentation requires the use of task specific feature extraction with conventional classification techniques. Semantic complexity of VHSR images coupled with landscape heterogeneity makes it difficult to use conventional classification approaches to produce Pan-Arctic scale geospatial products. This leads to adapting deep convolutional neural network (DLCNN) approaches that have excelled in computer vision (CV) applications. Transitioning domains from everyday image understanding to remote sensing image analysis is challenging. This study aims to systematically investigate two main obstacles confronted when adapting DLCNNs in large-scale RS image analysis tasks; 1) the limited availability labeled data sets and 2) the prohibitive nature of hyperparameter tunning when designing DLCNNs that can capture the rich characteristics embedded in remotely-sensed images. With a case study on the production of the first pan-Arctic ice-wedge polygon map using thousands of VHSR images, we demonstrate the use of transfer learning and the impact of hyperparameter tuning with a 16% improvement of the Mean Average Precision (mAP50). 
    more » « less
  3. The microtopography associated with ice-wedge polygons governs many aspects of Arctic ecosystem, permafrost, and hydrologic dynamics from local to regional scales owing to the linkages between microtopography and the flow and storage of water, vegetation succession, and permafrost dynamics. Wide-spread ice-wedge degradation is transforming low-centered polygons into high-centered polygons at an alarming rate. Accurate data on spatial distribution of ice-wedge polygons at a pan-Arctic scale are not yet available, despite the availability of sub-meter-scale remote sensing imagery. This is because the necessary spatial detail quickly produces data volumes that hamper both manual and semi-automated mapping approaches across large geographical extents. Accordingly, transforming big imagery into ‘science-ready’ insightful analytics demands novel image-to-assessment pipelines that are fueled by advanced machine learning techniques and high-performance computational resources. In this exploratory study, we tasked a deep-learning driven object instance segmentation method (i.e., the Mask R-CNN) with delineating and classifying ice-wedge polygons in very high spatial resolution aerial orthoimagery. We conducted a systematic experiment to gauge the performances and interoperability of the Mask R-CNN across spatial resolutions (0.15 m to 1 m) and image scene contents (a total of 134 km2) near Nuiqsut, Northern Alaska. The trained Mask R-CNN reported mean average precisions of 0.70 and 0.60 at thresholds of 0.50 and 0.75, respectively. Manual validations showed that approximately 95% of individual ice-wedge polygons were correctly delineated and classified, with an overall classification accuracy of 79%. Our findings show that the Mask R-CNN is a robust method to automatically identify ice-wedge polygons from fine-resolution optical imagery. Overall, this automated imagery-enabled intense mapping approach can provide a foundational framework that may propel future pan-Arctic studies of permafrost thaw, tundra landscape evolution, and the role of high latitudes in the global climate system. 
    more » « less
  4. Water temperature can vary substantially even across short distances within the same sub-watershed. Accurate prediction of stream water temperature at fine spatial resolutions (i.e., fine scales, ≤ 1 km) enables precise interventions to maintain water quality and protect aquatic habitats. Although spatiotemporal models have made substantial progress in spatially coarse time series modeling, challenges persist in predicting at fine spatial scales due to the lack of data at that scale. To address the problem of insufficient fine-scale data, we propose a Multi-Scale Graph Learning (MSGL) method. This method employs a multi-task learning framework where coarse-scale graph learning, bolstered by larger datasets, simultaneously enhances fine-scale graph learning. Although existing multi-scale or multi-resolution methods integrate data from different spatial scales, they often overlook the spatial correspondences across graph structures at various scales. To address this, our MSGL introduces an additional learning task, cross-scale interpolation learning, which leverages the hydrological connectedness of stream locations across coarse- and fine-scale graphs to establish cross-scale connections, thereby enhancing overall model performance. Furthermore, we have broken free from the mindset that multi-scale learning is limited to synchronous training by proposing an Asynchronous Multi-Scale Graph Learning method (ASYNC-MSGL). Extensive experiments demonstrate the state-of-the-art performance of our method for anti-sparse downscaling of daily stream temperatures in the Delaware River Basin, USA, highlighting its potential utility for water resources monitoring and management. 
    more » « less
  5. null (Ed.)
    Very high spatial resolution commercial satellite imagery can inform observation, mapping, and documentation of micro-topographic transitions across large tundra regions. The bridging of fine-scale field studies with pan-Arctic system assessments has until now been constrained by a lack of overlap in spatial resolution and geographical coverage. This likely introduced biases in climate impacts on, and feedback from the Arctic region to the global climate system. The central objective of this exploratory study is to develop an object-based image analysis workflow to automatically extract ice-wedge polygon troughs from very high spatial resolution commercial satellite imagery. We employed a systematic experiment to understand the degree of interoperability of knowledge-based workflows across distinct tundra vegetation units—sedge tundra and tussock tundra—focusing on the same semantic class. In our multi-scale trough modelling workflow, we coupled mathematical morphological filtering with a segmentation process to enhance the quality of image object candidates and classification accuracies. Employment of the master ruleset on sedge tundra reported classification accuracies of correctness of 0.99, completeness of 0.87, and F1 score of 0.92. When the master ruleset was applied to tussock tundra without any adaptations, classification accuracies remained promising while reporting correctness of 0.87, completeness of 0.77, and an F1 score of 0.81. Overall, results suggest that the object-based image analysis-based trough modelling workflow exhibits substantial interoperability across the terrain while producing promising classification accuracies. From an Arctic earth science perspective, the mapped troughs combined with the ArcticDEM can allow hydrological assessments of lateral connectivity of the rapidly changing Arctic tundra landscape, and repeated mapping can allow us to track fine-scale changes across large regions and that has potentially major implications on larger riverine systems. 
    more » « less