skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states
Abstract The spin- $$\frac{1}{2}$$ 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu 4 (OH) 6 FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- $$\frac{1}{2}$$ 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q  = 0 magnetic order. Partially Zn-substituted barlowite (Cu 3.44 Zn 0.56 (OH) 6 FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu 2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states.  more » « less
Award ID(s):
1834750
PAR ID:
10215042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
npj Quantum Materials
Volume:
5
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a “spin-liquid-like” state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO 4 , a triangular lattice antiferromagnet with effective spin-1/2 Yb 3+ ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO 4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ 0 / T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO 4 . These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO 4 . 
    more » « less
  2. In geometrically frustrated (GF) magnets, conventional long-range order is suppressed due to the presence of primitive triangular structural units, and the nature of the ensuing ground state remains elusive. One class of candidate states, extensively sought in experiments and vigorously studied theoretically, is the quantum spin liquid (QSL), a magnetically disordered state in which all spinsparticipate in a quantum-coherent many-body state. Randomly located impurities, present in all materials, may prevent QSL formation and instead lead to the formation of a spin-glass state. In this article, we review available data on the specific heat, magnetic susceptibility, and neutron scattering in GF materials. Such data show that a pure GF magnet possesses a characteristic ‘‘hidden energy scale’’ significantly exceeded by the other microscopic energy scales in the material. When cooled down to a temperature below the hidden energy scale, a GF material develops significant short-range order that dominates its properties and, in particular, dictates the spin-glass transition temperature for experimentally accessible impurity densities. We review the manifestations of short-range order in the commonly observed thermodynamic quantities in GF materials, possible scenarios for the hidden energy scale, and related open questions. 
    more » « less
  3. In solid materials, non-trivial topological states, electron correlations and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves and quantum spin liquids. The kagome lattice, made up of cornersharing triangles, can host these three ingredients simultaneously and has proved to be a fertile platform for studying diverse quantum phenomena including those stemming from the interplay of these ingredients. This Review introduces the fundamental properties of the kagome lattice and discusses the complex phenomena observed in several materials systems, including the intertwining of charge order and superconductivity in some kagome metals, the modulation of magnetism and topology in some kagome magnets, and the combination of symmetry breaking and Mott physics in ‘breathing’ kagome insulators. The Review also highlights open questions in the field and future research directions in kagome systems. 
    more » « less
  4. Abstract Neural network quantum states provide a novel representation of the many-body states of interacting quantum systems and open up a promising route to solve frustrated quantum spin models that evade other numerical approaches. Yet its capacity to describe complex magnetic orders with large unit cells has not been demonstrated, and its performance in a rugged energy landscape has been questioned. Here we apply restricted Boltzmann machines (RBMs) and stochastic gradient descent to seek the ground states of a compass spin model on the honeycomb lattice, which unifies the Kitaev model, Ising model and the quantum 120° model with a single tuning parameter. We report calculation results on the variational energy, order parameters and correlation functions. The phase diagram obtained is in good agreement with the predictions of tensor network ansatz, demonstrating the capacity of RBMs in learning the ground states of frustrated quantum spin Hamiltonians. The limitations of the calculation are discussed. A few strategies are outlined to address some of the challenges in machine learning frustrated quantum magnets. 
    more » « less
  5. Quantum spin liquids, exotic phases of matter with topological order, have been a major focus in physics for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to realize robust quantum computation. We used a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms were placed on the links of a kagome lattice, and evolution under Rydberg blockade created frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type was detected by using topological string operators that provide direct signatures of topological order and quantum correlations. Our observations enable the controlled experimental exploration of topological matter and protected quantum information processing. 
    more » « less