skip to main content

Title: A Review on Switching Slew Rate Control for Silicon Carbide Devices using Active Gate Drivers
Driving solutions for power semiconductor devices are experiencing new challenges since the emerging wide bandgap power devices, such as silicon carbide (SiC), with superior performance become commercially available. Generally, high switching speed is desired due to the lower switching loss, yet high dv/dt and di/dt can result in elevated electromagnetic interference (EMI) emission, false-triggering, and other detrimental effects during switching transients. Active gate drivers (AGDs) have been proposed to balance the switching losses and the switching speed of each switching transient. The review of the in-existence AGD methodologies for SiC devices has not been reported yet. This review starts with the essence of the slew rate control and its significance. Then a comprehensive review categorizing the state-of-the-art AGD methodologies is presented. It is followed by a summary of the AGDs control and timing strategies. In this work, using AGD to reduce the EMI noise of a 10 kV SiC MOSFET system is reported. This work also highlights other capabilities of AGDs including reliability enhancement of power devices and rebalancing the mismatched electrical parameters of parallel- and series-connected devices. These application scenarios of AGDs are validated via simulation and experimental results.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE Journal of Emerging and Selected Topics in Power Electronics
Page Range or eLocation-ID:
1 to 1
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Wide band gap (WBG) devices, like silicon carbide (SiC) MOSFET has gradually replaced the traditional silicon counterpart due to their advantages of high operating temperature and fast switching speed. Paralleling operations of SiC MOSFETs are unavoidable in high power applications in order to meet the system current requirement. However, parasitics mismatches among different paralleling devices would cause current unbalance issues, which would reduce the system reliability and maximum current capability. Thus, to achieve current balancing operation, this paper proposes a solution of using multi-level active gate driver, where the dynamic current sharing during turn-on and turn-off processes are achieved by adjusting the delays, intermediate turn-on and turn-off voltages. The static current sharing is maintained by regulating the static turn-on gate voltage, where the on-state resistance mismatch between different devices can be compensated. A double pulse test setup with two different SiC MOSFETs is built to emulate the scenario of worst case application with large differences of threshold voltage and on-state resistance. The experimental results demonstrate that the proposed active gate driver can achieve both dynamic and static current sharing operations for SiC MOSFETs with paralleling operation. Moreover, the system control diagram is discussed. Simulation studies are conducted to achieve closed-loopmore »control of the paralleled SiC MOSFETs with the aid of the active gate driver approach.« less
  2. Emerging applications of compact high-voltage SiC modules pose strong challenges in the module package insulation design. Such SiC module insulations are subjected to both high voltage DC and PWM excitations between different terminals during different switching intervals. High dV/dt strongly interferes with partial discharge (PD) testing as it is hard to distinguish PD pulses and PWM excitation induced interferences. This paper covers both the testing and modeling of PD phenomena in high-voltage power modules. A high dV/dt PD testing platform is proposed, which involves a Super-High-Frequency (SHF, >3GHz) down-mixing PD detection receiver and a high-voltage scalable square wave generator. The proposed method captures SHF PD signatures and determines PDIV for packaging insulation. Using this platform, this paper provides a group of PDIV comparisons of packaging insulation under DC and PWM waveforms and discloses discrepancies in these PDIV results with respect to their excitations. Based on these PD testing results, the paper further provides a model using space charge accumulation to explain the PD difference under DC and PWM waveforms. Both simulation and sample testing results are included in this paper to support this hypothesis. With this new model, the paper includes an updated insulation design procedure for high-voltage power modules.
  3. Wide band gap (WBG) devices feature high switching frequency operation and low switching loss. They have been widely adopted in tremendous applications. Nevertheless, the manufacture cost for SiC MOSFET greater than that of the Si IGBT. To achieve a trade off between cost and efficiency, the hybrid switch, which includes the paralleling operation of Si IGBT and SiC MOSFET, is proposed. In this article, an active gate driver is used for the hybrid switch to optimize both the switching and thermal performances. The turn-on and turn-off delays between two individual switches are controlled to minimize the switching loss of traditional Si IGBT. In this way, a higher switching frequency operation can be achieved for the hybrid switch to improve the converter power density. On the other hand, the gate source voltages are adjusted to achieve an optimized thermal performance between two individual switches, which can improve the reliability of the hybrid switch. The proposed active gate driver for hybrid switch is validated with a 2 kW Boost converter.
  4. In the power electronics equipment, passive EMI filters occupy up to 30% of system's volume and weight. In order to reduce the size of passive EMI filter in the power electronics system, active EMI filters (AEF) is introduced. With the AEF approaches, the size of the passive component within the EMI filter can be reduced by more than 50%. The higher attenuation achieved by AEFs, the more size reduction can be obtained through AEFs methodology. However, the performance of AEF with feedback control is limited to around 24 dB attenuation in the reported work. New methodology needs to be found to push forward the performance. In this study, a novel digital active EMI filter (DAEF) with the resonant controller, which provides ultra high-gain at frequencies of interest, is demonstrated for DM noise attenuation. The experimental test results show that the proposed EMI filter has 45 dB more attenuation at 150 kHz than the conventional passive EMI filter, which is also the highest attenuation reported in the AEF literature.
  5. About the LASER-TEC Laser and Fiber Optics Educational Series This series was created for use in engineering technology programs such as electronics, photonics, laser electro-optics, etc. This series of publications has three goals in mind: 1) to create educational materials for areas of laser electro-optics technology in which no materials exist, 2) to work with industry to use, adapt, and enhance available industry-created materials, 3) to make these materials available at no cost which, in turn, would generate more accessible education to everyone (including technicians). The Laser and Fiber Optics Educational Series is available for free online at About Wide-Bandgap Semiconductors New semiconductors based on silicon carbide (SiC) and gallium nitride (GaN) are now commercially available, which has been instrumental in removing obstacles that legacy silicon bipolar and metal-oxide-semiconductor field-effect transistor (MOSFET) devices could not overcome. These new devices have superior power-handling abilities due to their better thermal properties, higher switching frequencies, and lower conduction losses. Collectively, these properties make wide-bandgap devices the preferred technology for high-power conversion applications with efficiencies approaching 99%. For this reason, this new technology must be introduced to existing curricula, preparing engineers and technicians to tackle today’s and tomorrow’s power electronics challenges. This modulemore »is intended for use in technical programs after coverage of basic semiconductor theory and discrete devices such as silicon diodes, bipolar junction, field effect, and MOSFET transistors.« less