- Award ID(s):
- 1703696
- NSF-PAR ID:
- 10216220
- Date Published:
- Journal Name:
- Canadian Journal of Mathematics
- Volume:
- 73
- Issue:
- 1
- ISSN:
- 0008-414X
- Page Range / eLocation ID:
- 29 to 62
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract We investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $K$-theory of flag varieties (in type $A$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $K$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $n$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $\beta$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $K$-theory, and we state our results in this more general context.more » « less
-
We prove that the K-k-Schur functions are part of a family of inhomogenous symmetric functions whose top homogeneous components are Catalan functions, the Euler characteristics of certain vector bundles on the flag variety. Lam-Schilling-Shimozono identified the K-k-Schur functions as Schubert representatives for K-homology of the affine Grassmannian for SL_{k+1}. Our perspective reveals that the K-k-Schur functions satisfy a shift invariance property, and we deduce positivity of their branching coefficients from a positivity result of Baldwin and Kumar. We further show that a slight adjustment of our formulation for K-k-Schur functions produces a second shift-invariant basis which conjecturally has both positive branching and a rectangle factorization property. Building on work of Ikeda-Iwao-Maeno, we conjecture that this second basis gives the images of the Lenart-Maeno quantum Grothendieck polynomials under a K-theoretic analog of the Peterson isomorphism.more » « less
-
Abstract Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.
-
Abstract Grothendieck polynomials were introduced by Lascoux and Schützenberger and play an important role in K-theoretic Schubert calculus. In this paper, we give a new definition of double stable Grothendieck polynomials based on an iterated residue operation. We illustrate the power of our definition by calculating the Grothendieck expansion of K-theoretic Thom polynomials of ${\mathcal {A}}_{2}$ singularities. We present this expansion in two versions: one displays its stabilization property, while the other displays its expected finiteness property.more » « less
-
We prove that $\omega \Delta ^{\prime}_{e_{k}}e_{n}|_{t=0}$, the symmetric function in the Delta Conjecture at $t=0$, is a skewing operator applied to a Hall-Littlewood polynomial, and generalize this formula to the Frobenius series of all $\Delta $-Springer modules. We use this to give an explicit Schur expansion in terms of the Lascoux-Schützenberger cocharge statistic on a new combinatorial object that we call a battery-powered tableau. Our proof is geometric, and shows that the $\Delta $-Springer varieties of Levinson, Woo, and the second author are generalized Springer fibers coming from the partial resolutions of the nilpotent cone due to Borho and MacPherson. We also give alternative combinatorial proofs of our Schur expansion for several special cases, and give conjectural skewing formulas for the $t$ and $t^{2}$ coefficients of $\omega \Delta ^{\prime}_{e_{k}}e_{n}$.more » « less