skip to main content


Title: Seagrass Recovery Following Marine Heat Wave Influences Sediment Carbon Stocks
Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadow to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years. Overall, sites with higher seagrass recovery maintained 1.7x as much C compared to sites with lower recovery. Our study demonstrates that while seagrass blue C is vulnerable to MHWs, localization of seagrass loss can prevent meadow-wide C losses. Long-term (decadal and beyond) stability of seagrass blue C depends on seagrass resilience to short-term disturbance events.  more » « less
Award ID(s):
1824144 1851424 1832221
NSF-PAR ID:
10216595
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
7
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seagrass meadows are important carbon sinks in the global coastal carbon cycle yet are also among the most rapidly declining marine habitats. Their ability to sequester carbon depends on flow–sediment–vegetation interactions that facilitate net deposition, as well as high rates of primary production. However, the effects of seasonal and episodic variations in seagrass density on net sediment and carbon accumulation have not been well quantified. Understanding these dynamics provides insight into how carbon accumulation in seagrass meadows responds to disturbance events and climate change. Here, we apply a spatially resolved sediment transport model that includes coupling of seagrass effects on flow, waves, and sediment resuspension in a seagrass meadow to quantify seasonal rates of sediment and carbon accumulation in the meadow. Our results show that organic carbon accumulation rates were largely determined by sediment accumulation and that they both changed non‐linearly as a function of seagrass shoot density. While seagrass meadows effectively trapped sediment at meadow edges during spring–summer growth seasons, during winter senescence low‐density meadows (< 160 shoots m−2) were erosional with rates sensitive to density. Small variations in winter densities resulted in large changes in annual sediment and carbon accumulation in the meadow; meadow‐scale (hundreds of square meters) summer seagrass dieback due to marine heatwaves can result in annual erosion and carbon loss. Our findings highlight the strong temporal and spatial variability in sediment accumulation within seagrass meadows and the implications for annual sediment carbon burial rates and the resilience of seagrass carbon stocks under future climate change.

     
    more » « less
  2. Abstract

    Seagrass meadows are valued for their ecosystem services, including their role in mitigating anthropogenic CO2emissions through ‘blue carbon’ sequestration and storage. This study quantifies the dynamics of whole ecosystem metabolism on daily to interannual timescales for an eelgrass (Zostera marina) meadow using in situ benthic O2flux measurements by aquatic eddy covariance over a period of 11 yr. The measurements were part of the Virginia Coast Reserve Long‐Term Ecological Research study, and covered a relatively stable period of seagrass ecosystem metabolism 6–13 yr after restoration by seeding (2007–2014), a die‐off event likely related to persistently high temperatures during peak growing season in 2015, and a partial recovery from 2016 to 2018. This unique sequence provides an unprecedented opportunity to study seagrass resilience to temperature stress. With this extensive data set covering 115 full diel cycles, we constructed an average annual oxygen budget that indicated the meadow was in metabolic balance when averaged over the entire period, with gross primary production and respiration equal to 95 and −94 mmol O2m−2d−1, respectively. On an interannual scale, there was a shift in trophic status from balanced to net heterotrophy during the die‐off event in 2015, then to net autotrophy as the meadow recovered. The highly dynamic and variable nature of seagrass metabolism captured by our aquatic eddy covariance data emphasizes the importance of using frequent measurements throughout the year to correctly estimate trophic status of seagrass meadows.

     
    more » « less
  3. Although seagrass ecosystems are valued for the services they provide, anthropogenic impacts have led to global declines in seagrass area. South Florida harbors one of the most extensive and iconic seagrass landscapes in the world, but historic seagrass losses appeared to threaten their integrity. The establishment of the Florida Keys National Marine Sanctuary (FKNMS) in 1995 created a benthic community and water quality monitoring network to aid management efforts. With this study, we report on the status and trajectories of benthic communities in South Florida using 25 years of monitoring data. Overall, most of our permanent monitoring sites maintained stable benthic communities over the period of observation. However, for areas that did experience decline, we identified mechanisms for loss of the climax seagrass Thalassia testudinum in the FKNMS with no or only partial recovery over decadal timescales. We observed a shift towards fast-growing Halodule wrightii meadows at anthropogenically nutrient-enriched nearshore sites along the Florida Keys. In addition, we describe almost complete loss of seagrass meadows at some exposed, back-reef sites offshore from the Florida Keys resulting from physical disturbance by major hurricanes. This study demonstrates the utility of long-term monitoring programs for the identification of benthic community trajectories and their putative drivers on the seascape scale, offering valuable lessons for the design of future seagrass monitoring programs. 
    more » « less
  4. Abstract

    Seagrass growth and senescence exert a strong influence on flow structure and sediment transport processes in coastal environments. However, most previous studies of seasonal seagrass effects either focused on small‐scale field measurements or did not fully resolve the synergistic effects of flow‐wave‐vegetation‐sediment interaction at a meadow scale. In this study, we applied a coupled Delft3D‐FLOW and SWAN model that included effects of seagrass on flow, waves, and sediment resuspension in a shallow coastal bay to quantify seasonal seagrass impacts on bay dynamics. The model was extensively validated using seasonal field hydrodynamic and suspended sediment data within a seagrass meadow and a nearby unvegetated site. Our results show that seagrass meadows significantly attenuated flow (60%) and waves (20%) and reduced suspended sediment concentration (85%) during summer when its density reached a maximum. Probability density distributions of combined wave‐current bed shear stress within the seagrass meadow indicate that significant reductions in sediment resuspension during summer were mainly caused by flow retardation rather than wave attenuation. Although low‐density seagrass in winter resulted in much smaller reductions in flow and waves compared with summer meadows, small changes in winter seagrass density resulted in large differences in the magnitude of attenuation of flow and shear stress. Similarly, while high seagrass densities effectively trapped sediment during summer, small changes in winter density resulted in strong changes in net sediment flux into/out of the meadow. At our study site, low seagrass densities provided significant reductions in wintertime sediment loss compared to losses associated with completely unvegetated conditions.

     
    more » « less
  5. Coastal marine heatwaves have destructive and lasting impacts on foundational species 13 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are 14 often associated with marine heatwaves (MHW) which are defined as 5-days of water 15 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the 16 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW). 17 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was 18 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow 19 edge and central meadow interior. The observed sediment temperature, along with a 29-year 20 record of water temperature and water level was used to develop a sediment temperature model 21 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that 22 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave 23 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding 24 with a 172% increase in the annual number of SHW days, from 11 to 30 days year-1 between 25 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of 26 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and 27 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In 28 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated 29 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to 30 the observed seagrass loss. These results document heatwave propagation across the pelagic-31 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal 32 ecosystem processes and species dynamics. 
    more » « less