skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-vacuum measurements of optical scatter versus annealing temperature for amorphous Ta 2 O 5 and TiO 2 :Ta 2 O 5 thin films
Optical coatings formed from amorphous oxide thin films have many applications in precision measurements. The Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo use coatings of S i O 2 (silica) and T i O 2 : T a 2 O 5 (titania-doped tantala) and post-deposition annealing to 500°C to achieve low thermal noise and low optical absorption. Optical scattering by these coatings is a key limit to the sensitivity of the detectors. This paper describes optical scattering measurements for single-layer, ion-beam-sputtered thin films on fused silica substrates: two samples of T a 2 O 5 and two of T i O 2 : T a 2 O 5 . Using an imaging scatterometer at a fixed scattering angle of 12.8°, in-situ changes in the optical scatter of each sample were assessed during post-deposition annealing to 500°C in vacuum. The scatter of three of the four coated optics was observed to decrease during the annealing process, by 25–30% for tantala and up to 74% for titania-doped tantala, while the scatter from the fourth sample held constant. Angle-resolved scatter measurements performed before and after vacuum annealing suggest some improvement in three of the four samples. These results demonstrate that post-deposition, high-temperature annealing of single-layer tantala and titania-doped tantala thin films in vacuum does not lead to an increase in scatter, and may actually improve their scatter.  more » « less
Award ID(s):
1807069 1559694 1708035
PAR ID:
10217577
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
4
ISSN:
1084-7529; JOAOD6
Format(s):
Medium: X Size: Article No. 534
Size(s):
Article No. 534
Sponsoring Org:
National Science Foundation
More Like this
  1. Amorphous tantala ( T a 2 O 5 ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist A r + or A r + / O 2 + bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV A r + . A detrimental influence from low energy O 2 + bombardment on absorption loss and mechanical loss is observed. Low energy A r + bombardment removes excess oxygen point defects, while O 2 + bombardment introduces defects into the tantala films. 
    more » « less
  2. We present the optical and structural characterization of films of T a 2 O 5 , S c 2 O 3 , and S c 2 O 3 doped T a 2 O 5 with a cation ratio around 0.1 grown by reactive sputtering. The addition of S c 2 O 3 as a dopant induces the formation of tantalum suboxide due to the “oxygen getter” property of scandium. The presence of tantalum suboxide greatly affects the optical properties of the coating, resulting in higher absorption loss at λ<#comment/> = 1064 n m . The refractive index and optical band gap of the mixed film do not correspond to those of a mixture of T a 2 O 5 and S c 2 O 3 , given the profound structural modifications induced by the dopant. 
    more » « less
  3. Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures. The directly measured thermal noise is used to extract the mechanical loss for S i O 2 / T a 2 O 5 coatings, which are compared with previously reported values. 
    more » « less
  4. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  5. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsic A l x G a ( 1 −<#comment/> x ) N strip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by ∼<#comment/> 220 %<#comment/> , reduces electron leakage by ∼<#comment/> 11 times, and enhances optical power by ∼<#comment/> 225 %<#comment/> at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of ∼<#comment/> 61.5 %<#comment/> which is ∼<#comment/> 72 %<#comment/> higher, and IQE droop is ∼<#comment/> 12.4 %<#comment/> , which is ∼<#comment/> 333 %<#comment/> less compared to the conventional AlGaN EBL LED structure at ∼<#comment/> 284.5 n m wavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters. 
    more » « less