Indoor wayfinding has remained a challenge for people with disabilities in unfamiliar environments. With some accessible indoor wayfinding systems coming to the fore recently, a major application of interest is that of emergency evacuation due to natural or man-made threats to safety. Independent emergency evacuations can be particularly challenging for persons with disabilities as there is usually a requirement to quickly gather and use alternative wayfinding information to exit the indoor space safely. This paper presents the design and evaluation of an inclusive emergency evacuation system called SafeExit4All that empowers people with disabilities (in addition to the general population) to independently find a safe exit under emergency scenarios. The Safe-Exit4All application drives an underlying accessible indoor wayfinding system with the necessary emergency evacuation system parameters customized to an individual's preferences and needs for exiting safely from a premise. Upon receiving an emergency alert, a user accesses the SafeExit4All system through an app on their smartphone that has access to real-time information about the threat, and simply follows on-screen turn-by-turn navigation instructions towards the closest safe exit. Human subject evaluations show Safe-Exit4All to be effective not just in terms of reducing evacuation time, but also in providing guidance that results in users taking deterministic, shorter, and safer paths to the exit most suitable for them.
more »
« less
The Effect of An Emergency Evacuation on the Spread of COVID19
In an emergency evacuation, people almost always come in close proximity as they quickly leave a built environment under a potential threat. With COVID19, this situation presents yet another challenge: that of getting unintentionally exposed to an infected individual. To assess the epidemiological consequences of an emergency evacuation, we expanded a popular pedestrian dynamic model to enable social distancing during a normal exit and analyze the effect of possible transmission through respiratory droplets and aerosol. Computer simulations point to a troubling outcome, whereby the benefits of a quick exit could be outweighed by the risk of infection.
more »
« less
- PAR ID:
- 10217834
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 8
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There are a wide variety of mobile phone emergency response applications exist for both indoor and outdoor environments. However, outdoor applications mostly provide accident and navigation information to users, and indoor applications are limited to the unavailability of GPS positioning and WiFi access problems. This paper describes the proposed mobile augmented reality system (MARS) that allows both outdoor and indoor users to retrieve and manage information for emergency response and navigation that is spatially registered with the real world. The proposed MARS utilizes feature extraction for location sensing in indoor environments as during emergencies GPS and WiFi systems might not work. This paper describes the implementation of this MARS deployed on tablets and smartphones for building evacuation purposes. The MARS delivers critical evacuation information to smartphone users in the indoor environment and navigation information in the outdoor environments. A limited user study was conducted to test the effectiveness of the proposed MARS using the mobile phone usability questionnaire (MPUQ) framework. The results show that AR features were well integrated into the MARS and it will help identify the nearest exit in the building during the emergency evacuation.more » « less
-
This paper conceptualizes the problem of emergency evacuation as a paradigm for investigating human-robot interaction. We argue that emergency evacuation offers unique and important perspectives on human-robot interaction while also demanding close attention to the ethical ramifications of the technologies developed. We present a series of approaches for developing emergency evacuation robots and detail several essential design considerations. This paper concludes with a discussion of the ethical implications of emergency evacuation robots and a roadmap for their development, implementation, and evaluation.more » « less
-
During emergencies like fire and smoke or active shooter events, there is a need to address the vulnerability and assess plans for evacuation. With the recent improvements in technology for smartphones, there is an opportunity for geo-visual environments that offer experiential learning by providing spatial analysis and visual communication of emergency-related information to the user. This paper presents the development and evaluation of the mobile augmented reality application (MARA) designed specifically for acquiring spatial analysis, situational awareness, and visual communication. The MARA incorporates existing permanent features such as room numbers and signages in the building as markers to display the floor plan of the building and show navigational directions to the exit. Through visualization of integrated geographic information systems and real-time data analysis, MARA provides the current location of the person, the number of exits, and user-specific personalized evacuation routes. The paper also describes a limited user study that was conducted to assess the usability and effectiveness of the MARA application using the widely recognized System Usability Scale (SUS) framework. The results show the effectiveness of our situational awareness-based MARA in multilevel buildings for evacuations, educational, and navigational purposes.more » « less
-
Many coastal communities around the world are threatened by a near-field (or local) tsunami that could inundate the low-lying areas in a matter of minutes after generation. The universal consensus amongst emergency agencies and academic researchers is that a safe evacuation requires an effective response, which is typically assessed by the evacuation time estimate (ETE). ETE is an integral component of community emergency evacuation planning, especially areas prone to tsunamis. This paper aims to investigate the ETE for pedestrian evacuation during a tsunami through two different approaches: (1) the deterministic Least-Cost Distance (LCD) model; and (2) the dynamic Agent-Based Model (ABM). Then, the comparison of the two models in their intrinsic characteristics, strengths and weaknesses, and its applicability was discussed based on methodology behind of the LCD model and ABM. The LCD model was conducted to generate a spatially distributed ETE map, visualizing vulnerable areas where the evacuation time would be insufficient for individuals to reach safety. The ABM investigated uncertainty during tsunami evacuations, such as population distribution, walking speed, and milling time. This paper provides insights into the differences between the LCD model and ABM in terms of methodology and application. It assists the academic researchers and emergency managers, evacuation planners, and decision makers to choose an appropriate method for modeling pedestrian evacuation during tsunami.more » « less
An official website of the United States government

