Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2 > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles.
more »
« less
A multi-agent model to study epidemic spreading and vaccination strategies in an urban-like environment
Abstract Worldwide urbanization calls for a deeper understanding of epidemic spreading within urban environments. Here, we tackle this problem through an agent-based model, in which agents move in a two-dimensional physical space and interact according to proximity criteria. The planar space comprises several locations, which represent bounded regions of the urban space. Based on empirical evidence, we consider locations of different density and place them in a core-periphery structure, with higher density in the central areas and lower density in the peripheral ones. Each agent is assigned to a base location, which represents where their home is. Through analytical tools and numerical techniques, we study the formation mechanism of the network of contacts, which is characterized by the emergence of heterogeneous interaction patterns. We put forward an extensive simulation campaign to analyze the onset and evolution of contagious diseases spreading in the urban environment. Interestingly, we find that, in the presence of a core-periphery structure, the diffusion of the disease is not affected by the time agents spend inside their base location before leaving it, but it is influenced by their motion outside their base location: a strong tendency to return to the base location favors the spreading of the disease. A simplified one-dimensional version of the model is examined to gain analytical insight into the spreading process and support our numerical findings. Finally, we investigate the effectiveness of vaccination campaigns, supporting the intuition that vaccination in central and dense areas should be prioritized.
more »
« less
- PAR ID:
- 10217837
- Date Published:
- Journal Name:
- Applied Network Science
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2364-8228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human mobility anomaly detection based on location is essential in areas such as public health, safety, welfare, and urban planning. Developing models and approaches for location-based anomaly detection requires a comprehensive dataset. However, privacy concerns and the absence of ground truth hinder the availability of publicly available datasets. With this paper, we provide extensive simulated human mobility datasets featuring various anomaly types created using an existing Urban Patterns of Life Simulation. To create these datasets, we inject changes in the logic of individual agents to change their behavior. Specifically, we create four of anomalous agent behavior by (1) changing the agents’ appetite (causing agents to have meals more frequently), (2) changing their group of interest (causing agents to interact with different agents from another group). (3) changing their social place selection (causing agents to visit different recreational places) and (4) changing their work schedule (causing agents to skip work), For each type of anomaly, we use three degrees of behavioral change to tune the difficulty of detecting the anomalous agents. To select agents to inject anomalous behavior into, we employ three methods: (1) Random selection using a centralized manipulation mechanism, (2) Spread based selection using an infectious disease model, and (3) through exposure of agents to a specific location. All datasets are split into normal and anomalous phases. The normal phase, which can be used for training models of normalcy, exhibits no anomalous behavior. The anomalous phase, which can be used for testing for anomalous detection algorithm, includes ground truth labels that indicate, for each five-minute simulation step, which agents are anomalous at that time. Datasets are generated using the maps (roads and buildings) for Atlanta and Berlin having 1k agents in each simulation. All datasets are openly available at https://osf.io/dg6t3/. Additionally, we provide instructions to regenerate the data for other locations and numbers of agents.more » « less
-
Behavioral Dynamics of Epidemic Trajectories and Vaccination Strategies: A Simulation-Based AnalysisHuman behavior shapes epidemic trajectories, evolving as individuals reassess risks over time. Our study closes the loop between epidemic status, individual risk assessments, and interactions. We developed an agent-based model where the individuals can alter their decisions based on perceived risks. In our model, agents’ perceived risk is proxied by their full awareness of actual risks, such as the probability of infection or death. We conducted several simulations of COVID-19 spread for a large metropolitan city akin to New York City, covering the period from December 2020 to May 2021. Our model allows residents to decide daily on traveling to crowded city areas or stay in neighborhoods with relatively lower population density. Our base run simulations indicate that when individuals assess their own risk and understand how diseases spread, they adopt behaviors that slow the spread of virus, leading to fewer cumulative cases and deaths but extending the duration of the outbreak. This model was then simulated with various vaccination strategies such as random distribution, prioritizing older individuals, high-contact-rate individuals, or crowded area residents, all within a risk-response behavioral framework. Results show that, in the presence of agents’ behavioral response, there is only a marginal difference across different vaccination strategies. Specifically, vaccination in crowded areas slightly outperformed other vaccination strategies in reducing infections and prioritizing the elderly was slightly more effective in decreasing deaths. The lack of a universally superior vaccination strategy comes from the fact that lowering a risk leads to more risky behavior which partly compensates for vaccination effects. The comparable outcomes of random versus targeted vaccinations highlight the importance of equitable distribution as another key focus in pandemic responses.more » « less
-
Althouse, Benjamin Muir (Ed.)Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number ( R ). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R . We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R , centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R , alter host movements, or both.more » « less
-
We develop a mechanistic model that classifies individuals both in terms of epidemiological status (SIR) and vaccination attitude (Willing or Unwilling/Unable), with the goal of discovering how disease spread is influenced by changing opinions about vaccination. Analysis of the model identifies the existence and stability criteria for both disease-free and endemic disease equilibria. The analytical results, supported by numerical simulations, show that attitude changes induced by disease prevalence can destabilize endemic disease equilibria, resulting in limit cycles.more » « less
An official website of the United States government

