skip to main content


Title: Deep Learning-Based Hardness Prediction of Novel Refractory High-Entropy Alloys with Experimental Validation
Hardness is an essential property in the design of refractory high entropy alloys (RHEAs). This study shows how a neural network (NN) model can be used to predict the hardness of a RHEA, for the first time. We predicted the hardness of several alloys, including the novel C0.1Cr3Mo11.9Nb20Re15Ta30W20 using the NN model. The hardness predicted from the NN model was consistent with the available experimental results. The NN model prediction of C0.1Cr3Mo11.9Nb20Re15Ta30W20 was verified by experimentally synthesizing and investigating its microstructure properties and hardness. This model provides an alternative route to determine the Vickers hardness of RHEAs.  more » « less
Award ID(s):
1946231
NSF-PAR ID:
10218830
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
11
Issue:
1
ISSN:
2073-4352
Page Range / eLocation ID:
46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Refractory complex concentrated alloys (RCCAs) have drawn increasing attention recently owing to their balanced mechanical properties, including excellent creep resistance, ductility, and oxidation resistance. The mechanical and thermal properties of RCCAs are directly linked with the elastic constants. However, it is time consuming and expensive to obtain the elastic constants of RCCAs with conventional trial-and-error experiments. The elastic constants of RCCAs are predicted using a combination of density functional theory simulation data and machine learning (ML) algorithms in this study. The elastic constants of several RCCAs are predicted using the random forest regressor, gradient boosting regressor (GBR), and XGBoost regression models. Based on performance metrics R-squared, mean average error and root mean square error, the GBR model was found to be most promising in predicting the elastic constant of RCCAs among the three ML models. Additionally, GBR model accuracy was verified using the other four RHEAs dataset which was never seen by the GBR model, and reasonable agreements between ML prediction and available results were found. The present findings show that the GBR model can be used to predict the elastic constant of new RHEAs more accurately without performing any expensive computational and experimental work. 
    more » « less
  2. Abstract

    Severe lattice distortion is a prominent feature of high-entropy alloys (HEAs) considered a reason for many of those alloys’ properties. Nevertheless, accurate characterizations of lattice distortion are still scarce to only cover a tiny fraction of HEA’s giant composition space due to the expensive experimental or computational costs. Here we present a physics-informed statistical model to efficiently produce high-throughput lattice distortion predictions for refractory non-dilute/high-entropy alloys (RHEAs) in a 10-element composition space. The model offers improved accuracy over conventional methods for fast estimates of lattice distortion by making predictions based on physical properties of interatomic bonding rather than atomic size mismatch of pure elements. The modeling of lattice distortion also implements a predictive model for yield strengths of RHEAs validated by various sets of experimental data. Combining our previous model on intrinsic ductility, a data mining design framework is demonstrated for efficient exploration of strong and ductile single-phase RHEAs.

     
    more » « less
  3. Refractory high entropy alloys (RHEAs) have gained significant attention in recent years as potential replacements for Ni-based superalloys in gas turbine applications. Improving their properties, such as their high-temperature yield strength, is crucial to their success. Unfortunately, exploring this vast chemical space using exclusively experimental approaches is impractical due to the considerable cost of the synthesis, processing, and testing of candidate alloys, particularly at operation-relevant temperatures. On the other hand, the lack of reasonably accurate predictive property models, especially for high-temperature properties, makes traditional Integrated Computational Materials Engineering (ICME) methods inadequate. In this paper, we address this challenge by combining machine-learning models, easy-to-implement physics-based models, and inexpensive proxy experimental data to develop robust and fast-acting models using the concept of Bayesian updating. The framework combines data from one of the most comprehensive databases on RHEAs (Borg et al., 2020) with one of the most widely used physics-based strength models for BCC-based RHEAs (Maresca and Curtin, 2020) into a compact predictive model that is significantly more accurate than the state-of-the-art. This model is cross-validated, tested for physics-informed extrapolation, and rigorously benchmarked against standard Gaussian process regressors (GPRs) in a toy Bayesian optimization problem. Such a model can be used as a tool within ICME frameworks to screen for RHEAs with superior high-temperature properties. The code associated with this work is available at: https://codeocean.com/capsule/7849853/tree/v2. 
    more » « less
  4. Abstract

    Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength.

     
    more » « less
  5. In this work, a dataset including structural and mechanical properties of refractory multicomponent alloys was developed by fusing computations of phase diagram (CALPHAD) and density functional theory (DFT). The refractory multicomponent alloys, also named refractory complex concentrated alloys (CCAs) which contain 2–5 types of refractory elements were constructed based on Special Quasi-random Structure (SQS). The phase of alloys was predicted using CALPHAD and the mechanical property of alloys with stable and single body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated using DFT-based simulation. As a result, a dataset with 393 refractory alloys and 12 features, including volume, melting temperature, density, energy, elastic constants, mechanical moduli, and hardness, were produced. To test the capability of the dataset on supporting machine learning (ML) study to investigate the property of CCAs, CALPHAD, and DFT calculations were compared with principal components analysis (PCA) technique and rule of mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT results are more in line with experimental observations for the alloy phase, structural and mechanical properties. Furthermore, the data were utilized to train a verity of ML models to predict the performance of certain CCAs with advanced mechanical properties, highlighting the usefulness of the dataset for ML technique on CCA property prediction. 
    more » « less