Abstract Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.
more »
« less
Atmospheric dynamics drive most interannual U.S. droughts over the last millennium
The American West exemplifies drought-sensitive regions with growing populations. Paleoclimate investigations have documented severe droughts in this region before European settling, with major implications for water management and planning. Here, we leverage paleoclimate data assimilation to reconstruct past climate states, enabling a large-scale multivariate investigation of U.S. drought dynamics over the last millennium. These results confirm that La Niña conditions significantly influence southwest U.S. drought over the past millennium but only account for, by one metric, ~13% of interannual drought variability in that region. Atlantic sea surface temperatures may also contribute a small influence, but unexplained variability suggests a substantial role for internal atmospheric variability. This conclusion is buttressed by analysis of simulations from the Community Earth System Model Last Millennium Ensemble. While greenhouse gases will increase future drought risk, as shown in other work, interannual U.S. drought variations will also be widely influenced by processes internal to the atmosphere.
more »
« less
- Award ID(s):
- 1805490
- PAR ID:
- 10219211
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 32
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaay7268
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Medieval Climate Anomaly (MCA; ca. 950–1250 CE) and the Little Ice Age (LIA; ca. 1450–1850 CE) were periods generally characterized by respectively higher and lower temperatures in many regions. However, they have also been associated with drier and wetter conditions in areas around the Intertropical Convergence Zone (ITCZ) and the Asian Monsoon region and in areas impacted by large-scale climatic modes like the Northern Annular Mode and Southern Annular Mode (NAM and SAM respectively). To analyze coordinated changes in large-scale hydroclimate patterns and whether similar changes also extend to other periods of the Last Millennium (LM) outside the MCA and the LIA, reconstruction-based products have been analyzed. This includes the collection of tree-ring-based drought atlases (DAs), the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR). These analyses have shown coherent changes in the hydroclimate of tropical and extratropical regions, such as northern and central South America, East Africa, western North America, western Europe, the Middle East, Southeast Asia, and the Indo-Pacific, during the MCA, the LIA and other periods of the LM. Comparisons with model simulations from the Community Earth System Model – Last Millennium Ensemble (CESM-LME) and phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) show that both external forcing and internal variability contributed to these changes, with the contribution of internal variability being particularly important in the Indo-Pacific basin and that of external forcing in the Atlantic basin. These results may help to identify not only those areas showing coordinated changes, but also those regions more impacted by the internal variability, where forced model simulations would not be expected to successfully reproduce the evolution of past actual hydroclimate changes.more » « less
-
Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change.more » « less
-
Abstract Reconstructing past climates remains a difficult task because pre‐instrumental observational networks are composed of geographically sparse and noisy paleoclimate proxy records that require statistical techniques to inform complete climate fields. Traditionally, instrumental or climate model statistical relationships are used to spread information from proxy measurements to other locations and to other climate variables. Here ensembles drawn from single climate models and from combinations of multiple climate models are used to reconstruct temperature variability over the last millennium in idealized experiments. We find that reconstructions derived from multi‐model ensembles produce lower error than reconstructions from single‐model ensembles when reconstructing independent model and instrumental data. Specifically, we find the largest decreases in error over regions far from proxy locations that are often associated with large uncertainties in model physics, such as mid‐ and high‐latitude ocean and sea‐ice regions. Furthermore, we find that multi‐model ensemble reconstructions outperform single‐model reconstructions that use covariance localization. We propose that multi‐model ensembles could be used to improve paleoclimate reconstructions in time periods beyond the last millennium and for climate variables other than air temperature, such as drought metrics or sea ice variables.more » « less
-
Northwestern Europe has experienced a trend of increasingly wet winters over the past 150 years, with few explanations for what may have driven this hydroclimatic change. Here we use the Old World Drought Atlas (OWDA), a tree-ring based reconstruction of the self-calibrating Palmer Drought Severity Index (scPDSI), to examine this wetting trend and place it in a longer hydroclimatic context. We find that scPDSI variability in northwestern Europe is strongly correlated with the leading mode of the OWDA during the last millennium (1000–2012). This leading mode, here named the ‘English Channel’ (EC) mode, has pronounced variability on interannual to centennial timescales and has an expression in scPDSI similar to that of the East Atlantic teleconnection pattern. A shift in the EC mode from a prolonged negative phase to more neutral conditions during the 19th and 20th centuries is associated with the wetting trend over its area of influence in England, Wales, and much of northern continental Europe. The EC mode is the dominant scPDSI mode from approximately 1000–1850, after which its dominance waned in favor of the secondary ‘North–South’ (NS) mode, which has an expression in scPDSI similar to that of the winter North Atlantic Oscillation (NAO). We examine the dynamical nature of both of these modes and how they vary on interannual to centennial timescales. Our results provide insight into the nature of hydroclimate variability in Europe before the widespread availability of instrumental observations.more » « less
An official website of the United States government

