skip to main content

Title: Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C–H borylation of heteroarenes
A nontrigonal phosphorus triamide ( 1 , P{N[ o -NMe-C 6 H 4 ] 2 }) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P -hydrido diazaphospholene 2 , which is diverted by Atherton–Todd oxidation with chloroalkane to generate P -chloro diazaphospholene 3 . DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation.
Authors:
; ; ;
Award ID(s):
1654122 1900060
Publication Date:
NSF-PAR ID:
10219693
Journal Name:
Chemical Science
Volume:
12
Issue:
3
Page Range or eLocation-ID:
1031 to 1037
ISSN:
2041-6520
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a retrospective account of our group’s heterobinuclear (NHC)Cu-[MCO] catalyst design concept (NHC = N-heterocyclic carbene, [MCO] = metal carbonyl anion), the discovery of its application towards UV-light-induced dehydrogenative borylation of unactivated arenes, and the subsequent pursuit of thermal reaction conditions through structural modifications of the catalysts. The account highlights advantages of using a hypothesis-driven catalyst design approach that, while often fruitless with regard to the target transformation in this case, nonetheless vastly expanded the set of heterobinuclear catalysts available for other applications. In other words, curiosity-driven research conducted in a rational manner often provides valuable products with unanticipated applications, even if the primary objective is viewed to have failed. 1 Introduction to Heterobinuclear Catalysts for C–H Borylation 2 Pursuit of Thermal Borylation Conditions 3 Catalysts beyond Copper Carbenes 4 Conclusions
  2. Abstract

    Photoredox catalysis has provided many approaches to C(sp3)–H functionalization that enable selective oxidation and C(sp3)–C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)–H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)–H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles—including halides, water, alcohols, thiols, an electron-rich arene, and an azide—to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical—a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis—enabling new site-selectivity for late-stage C(sp3)–H functionalization.

  3. Abstract

    The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H.

  4. [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 {Cp* = η 5 -pentamethylcyclopentadienyl, R = Me, Et} have previously been found to be moderately air stable, yet highly reducing, with estimated D + /0.5D 2 (where D 2 and D + represent the dimer and the corresponding monomeric cation, respectively) redox potentials of ca. −2.0 V vs. FeCp 2 +/0 . These properties have led to their use as n-dopants for organic semiconductors. Use of arenes substituted with π-electron donors is anticipated to lead to even more strongly reducing dimers. [RuCp*(1-(Me 2 N)-3,5-Me 2 C 6 H 3 )] + PF 6 − and [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − have been synthesized and electrochemically and crystallographically characterized; both exhibit D + /D potentials slightly more cathodic than [RuCp*(1,3,5-R 3 C 6 H 3 )] + . Reduction of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − using silica-supported sodium–potassium alloy leads to a mixture of isomers of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] 2 , two of which have been crystallographically characterized. One of these isomers has a similar molecular structure to [RuCp*(1,3,5-Et 3more »C 6 H 3 )] 2 ; the central C–C bond is exo , exo , i.e. , on the opposite face of both six-membered rings from the metals. A D + /0.5D 2 potential of −2.4 V is estimated for this exo , exo dimer, more reducing than that of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 (−2.0 V). This isomer reacts much more rapidly with both air and electron acceptors than [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 due to a much more cathodic D 2 ˙ + /D 2 potential. The other isomer to be crystallographically characterized, along with a third isomer, are both dimerized in an exo , endo fashion, representing the first examples of such dimers. Density functional theory calculations and reactivity studies indicate that the central bonds of these two isomers are weaker than those of the exo , exo isomer, or of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 , leading to estimated D + /0.5D 2 potentials of −2.5 and −2.6 V vs. FeCp 2 +/0 . At the same time the D 2 ˙ + /D 2 potentials for the exo , endo dimers are anodically shifted relative to those of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 , resulting in much greater air stability than for the exo , exo isomer.« less
  5. An intramolecular C(sp 3 )–H amidation proceeds in the presence of t -BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N–H bond and selective radical activation of a benzylic C–H bond towards hydrogen atom transfer (HAT). Cyclization of this radical–anion intermediate en route to a two-centered/three-electron (2c,3e) C–N bond removes electron density from nitrogen. As this electronegative element resists such an “oxidation”, making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 10 7 -fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C–N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such “reductant upconversion” allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical–anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical.more »The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C–H amidation and C–H oxidation.« less