Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.
more »
« less
Robotic agricultural instrument for automated extraction of nematode cysts and eggs from soil to improve integrated pest management
Abstract Soybeans are an important crop for global food security. Every year, soybean yields are reduced by numerous soybean diseases, particularly the soybean cyst nematode (SCN). It is difficult to visually identify the presence of SCN in the field, let alone its population densities or numbers, as there are no obvious aboveground disease symptoms. The only definitive way to assess SCN population densities is to directly extract the SCN cysts from soil and then extract the eggs from cysts and count them. Extraction is typically conducted in commercial soil analysis laboratories and university plant diagnostic clinics and involves repeated steps of sieving, washing, collecting, grinding, and cleaning. Here we present a robotic instrument to reproduce and automate the functions of the conventional methods to extract nematode cysts from soil and subsequently extract eggs from the recovered nematode cysts. We incorporated mechanisms to actuate the stage system, manipulate positions of individual sieves using the gripper, recover cysts and cyst-sized objects from soil suspended in water, and grind the cysts to release their eggs. All system functions are controlled and operated by a touchscreen interface software. The performance of the robotic instrument is evaluated using soil samples infested with SCN from two farms at different locations and results were comparable to the conventional technique. Our new technology brings the benefits of automation to SCN soil diagnostics, a step towards long-term integrated pest management of this serious soybean pest.
more »
« less
- Award ID(s):
- 1556370
- PAR ID:
- 10220133
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The soybean cyst nematode (SCN; Heterodera glycines) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains. CPR1 is conserved in all isolates of SCN sequenced to date, suggesting it is critical for virulence. Transient expression of CPR1 in Nicotiana benthamiana leaves suppressed cell death induced by a constitutively active nucleotide binding leucine-rich repeat protein, RPS5, indicating that CPR1 inhibits effector-triggered immunity. CPR1 localizes in part to the mitochondria when expressed in planta. Proximity-based labeling in transgenic soybean roots, co-immunoprecipitation, and cleavage assays identified a branched-chain amino acid aminotransferase from soybean (GmBCAT1) as a substrate of CPR1. Consistent with this, GmBCAT1 also localizes to mitochondria. Silencing of the CPR1 transcript in the nematode reduced penetration frequency in soybean roots, while the expression of CPR1 in soybean roots enhanced susceptibility. Our data demonstrates that CPR1 is a conserved effector protease with a direct target in soybean roots, highlighting it as a promising candidate for decoy engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5‐phosphate‐dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10‐methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN‐resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF‐dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN‐resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF‐dependent catalytic activity relative to Essex SHMT8 (10‐ to 50‐fold decrease inkcat/Km) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF‐substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.more » « less
-
Two new in vitro methods were developed to analyze plant-parasitic nematode behavior, at the population and the individual organism levels, through time-lapse image analysis. The first method employed a high-resolution flatbed scanner to monitor the movement of a population of nematodes over a 24-h period at 25°C. The second method tracked multiple motion parameters of individual nematodes on a microscopic scale, using a high-speed camera. Changes in movement and motion of second-stage juveniles (J2) of the soybean cyst nematode Heterodera glycines Ichinohe were measured after exposure to a serial dilution of abamectin (0.1 to 100 μg/ml). Movement and motion of H. glycines were significantly reduced as the concentration of abamectin increased. The effective range of abamectin to inhibit movement and motion of H. glycines J2 was between 1.0 and 10 μg/ml. Proof-of-concept experiments for both methods produced one of the first in vitro sensitivity studies of H. glycines to abamectin. The two methods developed allow for higher-throughput analysis of nematode movement and motion and provide objective and data-rich measurements that are difficult to achieve from conventional microscopic laboratory methods.more » « less
-
Abstract Reactivation of toxoplasmosis is a significant health threat to chronically infected individuals, especially those who are or become immunocompromised. An estimated one-third of the world population is infected withToxoplasma, placing millions at risk. TheToxoplasmacyst is the foundation of disease with its ingestion leading to infection and its reactivation, from slow replicating bradyzoites to fast replicating tachyzoites, leading to cell lysis in tissues such as the brain. There are no treatments that prevent or eliminate cysts in part due to our poor understanding of the mechanisms that underlie cyst formation and recrudescence. In this study, we aimed to understand the biology of bradyzoites prior to recrudescence and the developmental pathways they initiate. We have discovered ME49EW cysts from infected mice harbor multiple bradyzoite subtypes that can be identified by their expression of distinct proteins. Sorting of these subtypes revealed they initiate distinct developmental pathways in animals and in primary astrocyte cell cultures. Single bradyzoite RNA sequencing indicates 5 major bradyzoite subtypes occur within these cysts. We further show that a crucial subtype comprising the majority of bradyzoites in chronically infected mice is absent from conventional in vitro models of bradyzoite development. Altogether this work establishes new foundational principles ofToxoplasmacyst development and reactivation that operate during the intermediate life cycle ofToxoplasma.more » « less
An official website of the United States government

