skip to main content


Title: Fluorescent recognition of l - and d -tryptophan in water by micelle probes
A series of BINOL-based monoaldehydes have been designed and synthesized as fluorescent probes for l - and d -tryptophan. It is found that in the presence of a diblock copolymer PEG-PLLA, these probes can be encapsulated into micelles which in combination with Zn 2+ have exhibited chemo- and enantioselective fluorescent enhancement with tryptophan in aqueous media.  more » « less
Award ID(s):
1855443
NSF-PAR ID:
10220411
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Chemistry Frontiers
Volume:
4
Issue:
8
ISSN:
2052-1537
Page Range / eLocation ID:
2384 to 2388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective recognition of certain amino acid enantiomers. ( S )-1 shows greatly enhanced fluorescence in the presence of l -glutamic acid and l -aspartic acid, but produces no or little fluorescence response toward their opposite enantiomers and other amino acids. ( R )-4 in combination with Zn 2+ shows greatly enhanced fluorescence in the presence of l -serine. ( S )-6 is designed for the selective recognition of histidine. Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound ( S )-8 which shows chemoselective as well as enantioselective fluorescence enhancement with l -lysine in the presence of Zn 2+ in aqueous solution. The same micelles are also used to encapsulate several ( S )-1,1′-binaphthyl-based monoaldehydes ( S )-10 for the chemoselective and enantioselective fluorescence recognition of l -tryptophan in the presence of Zn 2+ in aqueous solution. These findings have demonstrated that highly selective fluorescence identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the designated locations of the 1,1′-binaphthyls. The binaphthyl core structure of these probes provides both a chirality source and highly tunable fluorescence properties. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further expanded to develop fluorescent probes for the specific identification of many amino acids of interest. This should facilitate the analysis of chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed. 
    more » « less
  2. Abstract

    The benefits of contrast‐enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near‐infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell‐free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.

     
    more » « less
  3. ABSTRACT

    Cortical bone quality, which is sexually dimorphic, depends on bone turnover and therefore on the activities of remodeling bone cells. However, sex differences in cortical bone metabolism are not yet defined. Adding to the uncertainty about cortical bone metabolism, the metabolomes of whole bone, isolated cortical bone without marrow, and bone marrow have not been compared. We hypothesized that the metabolome of isolated cortical bone would be distinct from that of bone marrow and would reveal sex differences. Metabolite profiles from liquid chromatography–mass spectrometry (LC‐MS) of whole bone, isolated cortical bone, and bone marrow were generated from humeri from 20‐week‐old female C57Bl/6J mice. The cortical bone metabolomes were then compared for 20‐week‐old female and male C57Bl/6J mice. Femurs from male and female mice were evaluated for flexural material properties and were then categorized into bone strength groups. The metabolome of isolated cortical bone was distinct from both whole bone and bone marrow. We also found sex differences in the isolated cortical bone metabolome. Based on metabolite pathway analysis, females had higher lipid metabolism, and males had higher amino acid metabolism. High‐strength bones, regardless of sex, had greater tryptophan and purine metabolism. For males, high‐strength bones had upregulated nucleotide metabolism, whereas lower‐strength bones had greater pentose phosphate pathway metabolism. Because the higher‐strength groups (females compared with males, high‐strength males compared with lower‐strength males) had higher serum type I collagen cross‐linked C‐telopeptide (CTX1)/procollagen type 1 N propeptide (P1NP), we estimate that the metabolomic signature of bone strength in our study at least partially reflects differences in bone turnover. These data provide novel insight into bone bioenergetics and the sexual dimorphic nature of bone material properties in C57Bl/6 mice. © 2022 The Authors.JBMR Pluspublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

     
    more » « less
  4. Streams in the southeastern United States Coastal Plains serve as an essential source of energy and nutrients for important estuarine ecosystems, and dissolved organic matter (DOM) exported from these streams can have profound impacts on the biogeochemical and ecological functions of fluvial networks. Here, we examined hydrological and temperature controls of DOM during low-flow periods from a forested stream located within the Coastal Plain physiographic region of Alabama, USA. We analyzed DOM via combining dissolved organic carbon (DOC) analysis, fluorescence excitation–emission matrix combined with parallel factor analysis (EEM-PARAFAC), and microbial degradation experiments. Four fluorescence components were identified: terrestrial humic-like DOM, microbial humic-like DOM, tyrosine-like DOM, and tryptophan-like DOM. Humic-like DOM accounted for ~70% of total fluorescence, and biodegradation experiments showed that it was less bioreactive than protein-like DOM that accounted for ~30% of total fluorescence. This observation indicates fluorescent DOM (FDOM) was controlled primarily by soil inputs and not substantially influenced by instream production and processing, suggesting that the bulk of FDOM in these streams is transported to downstream environments with limited in situ modification. Linear regression and redundancy analysis models identified that the seasonal variations in DOM were dictated primarily by hydrology and temperature. Overall, high discharge and shallow flow paths led to the enrichment of less-degraded DOM with higher percentages of microbial humic-like and tyrosine-like compounds, whereas high temperatures favored the accumulation of high-aromaticity, high-molecular-weight, terrestrial, humic-like compounds in stream water. The flux of DOC and four fluorescence components was driven primarily by water discharge. Thus, the instantaneous exports of both refractory humic-like DOM and reactive protein-like DOM were higher in wetter seasons (winter and spring). As high temperatures and severe precipitation are projected to become more prominent in the southeastern U.S. due to climate change, our findings have important implications for future changes in the amount, source, and composition of DOM in Coastal Plain streams and the associated impacts on downstream carbon and nutrient supplies and water quality. 
    more » « less
  5. Thioamide substitutions in the backbones of proteins can modulate their structure and thermostability, or serve as spectroscopic probes in fluorescence quenching experiments. Using native chemical ligation, we have produced the first examples of a protein (calmodulin) containing two thioamides. Dithioamide variants were made to explore the effects of combining stabilizing, neutral, and destabilizing single thioamide substitutions. One of the dithioamide calmodulin variants exhibited stabilization greater than any monothioamide variant, although the effect could not easily be anticipated from the results of single substitutions. Each of the calmodulin variants retained the ability to bind a target peptide, and the dithioamide proteins exhibited an increase in fluorescence quenching of tryptophan relative to their single thioamide counterparts. These results show that multiply thioamidated proteins can be synthesized, and that properly placed thioamides can be used to increase protein thermostability or enhance fluorecsence quenching in peptide binding experiments. 
    more » « less