The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.
more »
« less
Picosecond laser electronic excitation tagging velocimetry using a picosecond burst-mode laser
Detailed characterizations of picosecond laser electronic excitation tagging (PLEET) in pure nitrogen ( ) and air with a 24 ps burst-mode laser system have been conducted. The burst-mode laser system is seeded with a 200 fs broadband seeding laser to achieve short pulse duration. As a non-intrusive molecular tagging velocimetry (MTV) technique, PLEET achieves “writing” via photo-dissociating nitrogen molecules and “tracking” by imaging the molecular nitrogen emissions. Key characteristics and performance of utilization of a 24 ps pulse-burst laser for MTV were obtained, including lifetime of the nitrogen emissions, power dependence, pressure dependence, and local flow heating by the laser pulses. Based on the experimental results and physical mechanisms of PLEET, 24 ps PLEET can produce similar 100 kHz molecular nitrogen emissions by photodissociation, while generating less flow disturbance by reducing laser joule heating than 100 ps PLEET.
more »
« less
- Award ID(s):
- 2026242
- PAR ID:
- 10220946
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 60
- Issue:
- 15
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. C60
- Size(s):
- Article No. C60
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of at and as low as above . The prototype unit is in size and weighs , allowing subsequent integration in compact systems.more » « less
-
We present the optical and structural characterization of films of , , and doped with a cation ratio around 0.1 grown by reactive sputtering. The addition of as a dopant induces the formation of tantalum suboxide due to the “oxygen getter” property of scandium. The presence of tantalum suboxide greatly affects the optical properties of the coating, resulting in higher absorption loss at . The refractive index and optical band gap of the mixed film do not correspond to those of a mixture of and , given the profound structural modifications induced by the dopant.more » « less
-
We perform single-shot frequency domain holography to measure the ultrafast spatio-temporal phase change induced by the optical Kerr effect and plasma in flexible Corning Willow Glass during femtosecond laser–matter interactions. We measure the nonlinear index of refraction ( ) to be and visualize the plasma formation and recombination on femtosecond time scales in a single shot. To compare with the experiment, we carry out numerical simulations by solving the nonlinear envelope equation.more » « less
-
The measurement and stabilization of the carrier–envelope offset frequency via self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficient stabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize an interferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. The beatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strong signal as compared to a traditional interferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory.more » « less
An official website of the United States government
