skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Pathway for Sustainable Agriculture
Expanding populations, the impacts of climate change, availability of arable land, and availability of water for irrigation collectively strain the agricultural system. To keep pace and adapt to these challenges, food producers may adopt unsustainable practices that may ultimately intensify the strain. What is a course of technological evolution and adoption that can break this cycle? In this paper we explore a set of technologies and food production scenarios with a new, reduced-order model. First the model is developed. The model combines limitations in the sustainable water supply, agricultural productivity as a function of intensification, and rising food demands. Model inputs are derived from the literature and historical records. Monte Carlo simulation runs of the model are used to explore the potential of existing and future technologies to bring us ever closer to a more sustainable future instead of ever farther. This is the concept of a moving sustainability horizon (the year in the future where sustainability can be achieved with current technological progress if demand remains constant). The sustainability gap is the number of years between the present and the sustainability horizon. As demand increases, the sustainability horizon moves farther into the future. As technology improves and productivity increases, the sustainability horizon is closer to the present. Sustainability, therefore, is achieved when the sustainability horizon collides with the present, closing the sustainability gap to zero. We find one pathway for water management technology adoption and innovation that closes the sustainability gap within the reduced-order model’s outputs. In this scenario, micro-irrigation adoption, minimal climate change impacts, reduced food waste, and additional transformative innovations such as smart greenhouses and agrivoltaic systems are collectively needed. The model shows that, in the absence of these changes, and continuing along our current course, the productivity of the agricultural system would become insufficient in the decade following 2050.  more » « less
Award ID(s):
1712530
PAR ID:
10223520
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainability
Volume:
13
Issue:
8
ISSN:
2071-1050
Page Range / eLocation ID:
4328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effects of a changing climate on agricultural system productivity are poorly understood, and likely to be met with as yet undefined agricultural adaptations by farmers and associated business and governmental entities. The continued vitality of agricultural systems depends on economic conditions that support farmers’ livelihoods. Exploring the long-term effects of adaptations requires modeling agricultural and economic conditions to engage stakeholders upon whom the burden of any adaptation will rest. Here, we use a new freeware model FEWCalc (Food-Energy-Water Calculator) to project farm incomes based on climate, crop selection, irrigation practices, water availability, and economic adaptation of adding renewable energy production. Thus, FEWCalc addresses United Nations Global Sustainability Goals No Hunger and Affordable and Clean Energy. Here, future climate scenario impacts on crop production and farm incomes are simulated when current agricultural practices continue so that no agricultural adaptations are enabled. The model Decision Support System for Agrotechnology Transfer (DSSAT) with added arid-region dynamics is used to simulate agricultural dynamics. Demonstrations at a site in the midwest USA with 2008–2017 historical data and two 2018–2098 RCP climate scenarios provide an initial quantification of increased agricultural challenges under climate change, such as reduced crop yields and increased financial losses. Results show how this finding is largely driven by increasing temperatures and changed distribution of precipitation throughout the year. Without effective technological advances and operational and policy changes, the simulations show how rural areas could increasingly depend economically on local renewable energy, while agricultural production from arid regions declines by 50% or more. 
    more » « less
  2. null (Ed.)
    Agricultural production in the Great Plains provides a significant amount of food for the United States while contributing greatly to farm income in the region. However, recurrent droughts and expansion of crop production are increasing irrigation demand, leading to extensive pumping and attendant depletion of the Ogallala aquifer. In order to optimize water use, increase the sustainability of agricultural production, and identify best management practices, identification of food–water conflict hotspots in the Ogallala Aquifer Region (OAR) is necessary. We used satellite remote sensing time series of agricultural production (net primary production, NPP) and total water storage (TWS) to identify hotspots of food–water conflicts within the OAR and possible reasons behind these conflicts. Mean annual NPP (2001–2018) maps clearly showed intrusion of high NPP, aided by irrigation, into regions of historically low NPP (due to precipitation and temperature). Intrusion is particularly acute in the northern portion of OAR, where mean annual TWS (2002–2020) is high. The Oklahoma panhandle and Texas showed large decreasing TWS trends, which indicate the negative effects of current water demand for crop production on TWS. Nebraska demonstrated an increasing TWS trend even with a significant increase of NPP. A regional analysis of NPP and TWS can convey important information on current and potential conflicts in the food–water nexus and facilitate sustainable solutions. Methods developed in this study are relevant to other water-constrained agricultural production regions. 
    more » « less
  3. null (Ed.)
    The challenge of meeting growing food and energy demand while also mitigating climate change drives the development and adoption of renewable technologies ad approaches. Agrivoltaic systems are an approach that allows for both agricultural and electrical production on the same land area. These systems have the potential to reduced water demand and increase the overall water productivity of certain crops. We observed the microclimate and growth characteristics of Tomato plants (Solanum lycopersicon var. Legend) grown within three locations on an Agrivoltaic field (control, interrow, and below panels) and with two different irrigation treatments (full and deficit). Total crop yield was highest in the control fully irrigated areas a, b (88.42 kg/row, 68.13 kg/row), and decreased as shading increased, row full irrigated areas a, b had 53.59 kg/row, 32.76 kg/row, panel full irrigated areas a, b had (33.61 kg/row, 21.64 kg/row). Water productivity in the interrow deficit treatments was 53.98 kg/m3 greater than the control deficit, and 24.21 kg/m3 greater than the panel deficit, respectively. These results indicate the potential of Agrivoltaic systems to improve water productivity even for crops that are traditionally considered shade-intolerant. 
    more » « less
  4. Abstract The rapid depletion of US groundwater resources and rising number of dying wells in the Western US brings attention to the significance of groundwater governance and sustainability restrictions. However, such restrictions on groundwater withdrawals are likely to generate spillover effects causing further environmental stresses in other locations and adding to the complexity of sustainability challenges. The goal of this paper is to improve our understanding of the implications of growing global food demand for local sustainability stresses and the implications of local sustainability policies for local, regional, and global food production, land use, and prices. We employ SIMPLE-G-US (Simplified International Model of agricultural Prices, Land use, and the Environment—Gridded version for the United States) to distangle the significance or remote changes in population and income for irrigation and water resources in the US. Then we examine the local-to-global impacts of potential US groundwater sustainability policies. We find that developments in international markets are significant, as more than half of US sustainability stresses by 2050 are caused by increased commodity demand from abroad. Furthermore, a US sustainable groundwater policy can cause overseas spillovers of US production, thereby potentially contributing to environmental stresses elsewhere, even as groundwater stress in the US is alleviated. These unintended consequences could include deforestation due to cropland expansion, as well as degradation in water quality due to intensification of production in non-targeted areas. 
    more » « less
  5. Abstract Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (R2 = 0.68), as well as survey data from the United States Department of Agriculture (R2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results. 
    more » « less