skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Size and Surface Treatment on Fatigue Life of Fused Filament Fabrication Manufactured Acrylonitrile Butadiene Styrene Parts
Abstract An experimental study was conducted to study the effects of geometric size and surface treatment on the fatigue life of fused filament fabrication (FFF) manufactured acrylonitrile butadiene styrene (ABS) parts. Moore rotating-beam fatigue tests were conducted with four different levels of loadings to obtain the S–N curves. Two different sizes (control size and large size) and three different surface treatment methods (as-printed, acetone-treated, and sandpaper polished) were studied. The larger specimens had significantly decreased fatigue life because of a larger volume, and hence a greater probability of defects for crack initiation and propagation, as compared with the control specimen. The acetone-treated specimen had a smooth surface. Its fatigue life, however, decreased significantly because the acetone treatment caused internal damage that weakened the specimen and was reported for the first time. The sandpaper polished specimen also had a smooth surface, but its effect on the fatigue life was insignificant because the extruded filament direction on the specimen surface was parallel to the loading direction. The present results lead to a better understanding of the effects of geometric size and surface treatment on the fatigue performance of FFF specimens. The study also provides important insights for the design of part size and surface treatment of three-dimensional (3D) printed plastic components for fatigue loading end-use applications.  more » « less
Award ID(s):
1659856
PAR ID:
10225073
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
143
Issue:
8
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing (AM) is often used to create designs inspired by topology optimization and biological structures, yielding unique cross-sectional geometries spanning across scales. However, manufacturing defects intrinsic to AM can affect material properties, limiting the applicability of a uniform material model across diverse cross-sections. To examine this phenomenon, this paper explores the influence of specimen size and layer height on the compressive modulus of polycarbonate (PC) and thermoplastic polyurethane (TPU) specimens fabricated using fused filament fabrication (FFF). Micro-computed tomography imaging and compression testing were conducted on the printed samples. The results indicate that while variations in the modulus were statistically significant due to both layer height and size of the specimen in TPU, variations in PC were only statistically significant due to layer height. The highest elastic modulus was observed at a 0.2 mm layer height for both materials across different sizes. These findings offer valuable insights into design components for FFF, emphasizing the importance of considering mechanical property variations due to feature size, especially in TPU. Furthermore, locations with a higher probability of failure are recommended to be printed closer to the print bed, especially for TPU, because of the lower void volume fraction observed near the heated print bed. 
    more » « less
  2. This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components. 
    more » « less
  3. Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared. 
    more » « less
  4. Electron Beam Melting (EBM) is a widespread additive manufacturing technology for metallic-part fabrication; however, final products can contain microstructural defects that reduce fatigue performance. While the effects of gas and keyhole pores are well characterized, other defects, including lack of fusion and smooth facets, warrant additional investigation given their potential to significantly impact fatigue life. Therefore, such defects were intentionally induced into EBM Ti-6Al-4V, a prevalent titanium alloy, to investigate their degradation on stress-controlled fatigue life. The focus offset processing parameter was varied outside of typical manufacturing settings to generate a variety of defect types, and specimens were tested under fatigue loading, followed by surface and microstructure characterization. Fatigue damage primarily initiated at smooth facet sites or sites consisting of un-melted powder due to a lack of fusion, and an increase in both fatigue life and void content with increasing focus offset was noted. This counter-intuitive relationship is attributed to lower focus offsets producing a microstructure more prone to smooth facets, discussed in the literature as being due to lack of fusion or cleavage fracture, and this study indicates that these smooth flaws are most likely a result of lack of fusion. 
    more » « less
  5. In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts. 
    more » « less