Abstract The Totten Glacier in East Antarctica, with an ice volume equivalent to >3.5 m of global sea-level rise, is grounded below sea level and, therefore, vulnerable to ocean forcing. Here, we use bathymetric and oceanographic observations from previously unsampled parts of the Totten continental shelf to reveal on-shelf warm water pathways defined by deep topographic features. Access of warm water to the Totten Ice Shelf (TIS) cavity is facilitated by a deep shelf break, a broad and deep depression on the shelf, a cyclonic circulation that carries warm water to the inner shelf, and deep troughs that provide direct access to the TIS cavity. The temperature of the warmest water reaching the TIS cavity varies by ~0.8 °C on an interannual timescale. Numerical simulations constrained by the updated bathymetry demonstrate that the deep troughs play a critical role in regulating ocean heat transport to the TIS cavity and the subsequent basal melt of the ice shelf.
more »
« less
Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica
Thwaites Glacier is the most rapidly changing outlet of the West Antarctic Ice Sheet and adds large uncertainty to 21st century sea-level rise predictions. Here, we present the first direct observations of ocean temperature, salinity, and oxygen beneath Thwaites Ice Shelf front, collected by an autonomous underwater vehicle. On the basis of these data, pathways and modification of water flowing into the cavity are identified. Deep water underneath the central ice shelf derives from a previously underestimated eastern branch of warm water entering the cavity from Pine Island Bay. Inflow of warm and outflow of melt-enriched waters are identified in two seafloor troughs to the north. Spatial property gradients highlight a previously unknown convergence zone in one trough, where different water masses meet and mix. Our observations show warm water impinging from all sides on pinning points critical to ice-shelf stability, a scenario that may lead to unpinning and retreat.
more »
« less
- PAR ID:
- 10227027
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 15
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabd7254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thwaites Glacier is one of the fastest‐changing ice‐ocean systems in Antarctica. Basal melting beneath Thwaites' floating ice shelf, especially around pinning points and at the grounding line, sets the rate of ice loss and Thwaites' contribution to global sea‐level rise. The rate of basal melting is controlled by the transport of heat into and through the ice–ocean boundary layer toward the ice base. Here we present the first turbulence observations from the grounding line of Thwaites Eastern Ice Shelf. We demonstrate that contrary to expectations, the turbulence‐driven vertical flux of heat into the ice–ocean boundary layer is insufficient to sustain the basal melt rate. Instead, most of the heat required must be delivered by lateral fluxes driven by the large‐scale advective circulation. Lateral processes likely dominate beneath the most unstable warm‐cavity ice shelves, and thus must be fully incorporated into parameterizations of ice shelf basal melting.more » « less
-
Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.more » « less
-
Abstract The recent discovery of warm ocean water near the Totten Ice Shelf (TIS) has increased attention to the Sabrina Coast in East Antarctica. We report the result of 6‐day helicopter‐based observations conducted during the 61st Japanese Antarctic Research Expedition (JARE61), revealing warm ocean water (0.5–1°C) occupying a large previously unsampled area of the Sabrina Coast (116.5°E−120°E) below 550–600 m. Along the TIS front, we observe modified Circumpolar Deep Water (mCDW) well above freezing (∼−0.7°C), consistent with previous work. We identify glacial meltwater outflow from the TIS cavity west of 116°E. No signs of mCDW intrusions toward the Moscow University Ice Shelf cavity are observed; however, those observations were limited to only two shallow (∼330 m) profiles. We also highlight the advantages of helicopter‐based observations for accessibility, speed, maneuverability, and cost‐efficiency. The combination of ship‐ and helicopter‐based observations using the JARE61 approach will increase the potential of future polar oceanographic observations.more » « less
-
Abstract The heat transfer between the warm oceanic water and the floating portion of the Antarctic ice sheet (the ice shelves) occurs in a dynamic environment with year‐to‐year changes in the distribution of icebergs and fast‐ice (the “icescape”). Dramatic events such as the collapse of glacier tongues are apparent in satellite images but oceanographic observations are insufficient to capture the synoptic impact of such events on the supply of oceanic heat to ice shelves. This study uses a 3D numerical model and semi‐idealized experiments to examine whether the current high melting rates of ice shelves in the Amundsen Sea could be mitigated by certain icescape configurations. Specifically, the experiments quantify the impacts on oceanic heat supply of presence/absence of the Thwaites Glacier Tongue, Bear Ridge Iceberg Chain, tabular iceberg B22, and fast‐ice cover seaward of Pine Island Ice Shelf (PIS). The experiments reveal that future changes in the coastal icescape are unlikely to reverse the high ice shelf melting rates of the Amundsen Sea, and that icescape changes between 2011 and 2022 actually enhanced them slightly. Ice shelves such as Crosson and Thwaites are found to have multiple viable sources of oceanic heat whose relative importance may shift following icescape reconfigurations but the overall heat supply remains high. Similarly, the formation of a fast‐ice cover seaward of PIS slows down the cavity circulation (by 7%) but does not reduce its heat supply.more » « less
An official website of the United States government

